These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36668676)

  • 1. Synchronisation of wearable inertial measurement units based on magnetometer data.
    Spilz A; Munz M
    Biomed Tech (Berl); 2023 Jun; 68(3):263-273. PubMed ID: 36668676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of Lumbar Spine Motion Using a 3-IMU Wearable Cluster.
    Moon KS; Gombatto SP; Phan K; Ozturk Y
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wearable Flow-MIMU Device for Monitoring Human Dynamic Motion.
    Liu SQ; Zhang JC; Li GZ; Zhu R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):637-645. PubMed ID: 32031941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Wide-Range, Wireless Wearable Inertial Motion Sensing System for Capturing Fast Athletic Biomechanics in Overhead Pitching.
    Lapinski M; Brum Medeiros C; Moxley Scarborough D; Berkson E; Gill TJ; Kepple T; Paradiso JA
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Wearable-Sensor System with AI Technology for Real-Time Biomechanical Feedback Training in Hammer Throw.
    Wang Y; Shan G; Li H; Wang L
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Inertial Sensors Allow for Quantitative Assessment of Shoulder and Elbow Kinematics in a Cadaveric Knee Arthroscopy Model.
    Rose M; Curtze C; O'Sullivan J; El-Gohary M; Crawford D; Friess D; Brady JM
    Arthroscopy; 2017 Dec; 33(12):2110-2116. PubMed ID: 28866347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Detection of Trunk Flexions: Capacitive Elastomeric Sensors Compared to Inertial Sensors.
    Frediani G; Bocchi L; Vannetti F; Zonfrillo G; Carpi F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of Plank Techniques Using Wearable Sensors.
    Chen ZR; Tsai WC; Huang SF; Li TY; Song CY
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review.
    Prasanth H; Caban M; Keller U; Courtine G; Ijspeert A; Vallery H; von Zitzewitz J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New method to evaluate three-dimensional push-off angle during short-track speed skating using wearable inertial measurement unit sensors.
    Kim K; Kim JS; Purevsuren T; Khuyagbaatar B; Lee S; Kim YH
    Proc Inst Mech Eng H; 2019 Apr; 233(4):476-480. PubMed ID: 30773989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable sensor validation of sports-related movements for the lower extremity and trunk.
    Dahl KD; Dunford KM; Wilson SA; Turnbull TL; Tashman S
    Med Eng Phys; 2020 Oct; 84():144-150. PubMed ID: 32977911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Lower Limb Kinematics Using a Lie Group Constrained Extended Kalman Filter with a Reduced Wearable IMU Count and Distance Measurements.
    Sy LWF; Lovell NH; Redmond SJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating Lower Limb Kinematics using Distance Measurements with a Reduced Wearable Inertial Sensor Count.
    Sy L; Lovell NH; Redmond SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4858-4862. PubMed ID: 33019078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population.
    De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K
    Clin Biomech (Bristol, Avon); 2018 May; 54():22-27. PubMed ID: 29533844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground Contact Time Estimating Wearable Sensor to Measure Spatio-Temporal Aspects of Gait.
    Bernhart S; Kranzinger S; Berger A; Peternell G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset.
    Karatsidis A; Richards RE; Konrath JM; van den Noort JC; Schepers HM; Bellusci G; Harlaar J; Veltink PH
    J Neuroeng Rehabil; 2018 Aug; 15(1):78. PubMed ID: 30111337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics.
    Niswander W; Wang W; Kontson K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional movement assessment by means of inertial sensor technology to discriminate between movement behaviour of healthy controls and persons with knee osteoarthritis.
    van der Straaten R; Wesseling M; Jonkers I; Vanwanseele B; Bruijnes AKBD; Malcorps J; Bellemans J; Truijen J; De Baets L; Timmermans A
    J Neuroeng Rehabil; 2020 May; 17(1):65. PubMed ID: 32430036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison.
    Milosevic B; Leardini A; Farella E
    Biomed Eng Online; 2020 Apr; 19(1):25. PubMed ID: 32326957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of Wearable Sensor Technology in Hand Goniometry: A Systematic Review.
    Avila FR; Carter RE; McLeod CJ; Bruce CJ; Giardi D; Guliyeva G; Forte AJ
    Hand (N Y); 2023 Mar; 18(2):340-348. PubMed ID: 34032154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.