BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36669131)

  • 1. 3D Printable Hybrid Gel Made of Polymer Surface-Modified Cellulose Nanofibrils Prepared by Surface-Initiated Controlled Radical Polymerization (SI-SET-LRP) and Upconversion Luminescent Nanoparticles.
    Jiang X; Mietner JB; Harder C; Komban R; Chen S; Strelow C; Sazama U; Fröba M; Gimmler C; Müller-Buschbaum P; Roth SV; Navarro JRG
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5687-5700. PubMed ID: 36669131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils.
    Navarro JRG; Edlund U
    Biomacromolecules; 2017 Jun; 18(6):1947-1955. PubMed ID: 28482654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Initiated Controlled Radical Polymerization Approach to In Situ Cross-Link Cellulose Nanofibrils with Inorganic Nanoparticles.
    Navarro JRG; Rostami J; Ahlinder A; Mietner JB; Bernin D; Saake B; Edlund U
    Biomacromolecules; 2020 May; 21(5):1952-1961. PubMed ID: 32223221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Aqueous SI-ARGET ATRP from Cellulose Nanofibrils Using Hydrophilic and Hydrophobic Monomers.
    Kaldéus T; Telaretti Leggieri MR; Cobo Sanchez C; Malmström E
    Biomacromolecules; 2019 May; 20(5):1937-1943. PubMed ID: 30889349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane.
    Kim GH; Kang DH; Jung BN; Shim JK
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-properties relationships of defined CNF single-networks crosslinked by telechelic PEGs.
    Cortes Ruiz MF; Garemark J; Ritter M; Brusentsev Y; Larsson PT; Olsén P; Wågberg L
    Carbohydr Polym; 2024 Sep; 339():122245. PubMed ID: 38823913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin.
    Zhao J; Wei Z; Feng X; Miao M; Sun L; Cao S; Shi L; Fang J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14945-51. PubMed ID: 25116651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites.
    Cheng D; Wei P; Zhang L; Cai J
    RSC Adv; 2018 Jul; 8(48):27045-27053. PubMed ID: 35539974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels.
    Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L
    Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing.
    Navarro JR; Wennmalm S; Godfrey J; Breitholtz M; Edlund U
    Biomacromolecules; 2016 Mar; 17(3):1101-9. PubMed ID: 26789648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of a bio-based ink made of cross-linked cellulose nanofibrils with various metal cations.
    Mietner JB; Jiang X; Edlund U; Saake B; Navarro JRG
    Sci Rep; 2021 Mar; 11(1):6461. PubMed ID: 33742068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on cellulose nanofibrils/copolymacrolactone based nano-composites with hydrophobic behaviour, self-healing ability and antioxidant activity.
    Chiriac AP; Ghilan A; Croitoriu A; Serban A; Bercea M; Stoleru E; Nita LE; Doroftei F; Stoica I; Bargan A; Rusu AG; Chiriac VM
    Int J Biol Macromol; 2024 Mar; 262(Pt 1):130034. PubMed ID: 38340942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.
    Mulyadi A; Zhang Z; Deng Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an Amphiphilic Janus-Type Surface in the Cellulose Nanofibril Prepared by Aqueous Counter Collision.
    Tsuji T; Tsuboi K; Yokota S; Tagawa S; Kondo T
    Biomacromolecules; 2021 Feb; 22(2):620-628. PubMed ID: 33415976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyoxometalate/Cellulose Nanofibrils Aerogels for Highly Efficient Oxidative Desulfurization.
    Song R; Zhang X; Wang H; Liu C
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils.
    Wang Q; Ji C; Sun J; Zhu Q; Liu J
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving salt tolerance and thermal stability of cellulose nanofibrils by grafting modification.
    Liu X; Wen Y; Qu J; Geng X; Chen B; Wei B; Wu B; Yang S; Zhang H; Ni Y
    Carbohydr Polym; 2019 May; 211():257-265. PubMed ID: 30824087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Characterization of Cellulose Nanofibril-Reinforced Polyurethane Foam.
    Leng W; Li J; Cai Z
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.