These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36669235)
21. Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes. Zhao X; You L; Wang T; Zhang X; Li Z; Ding L; Li J; Xiao C; Han F; Li B Int J Nanomedicine; 2020; 15():8583-8594. PubMed ID: 33173295 [TBL] [Abstract][Full Text] [Related]
22. Effect of zinc ions on improving implant fixation in osteoporotic bone. Li X; Li Y; Peng S; Ye B; Lin W; Hu J Connect Tissue Res; 2013; 54(4-5):290-6. PubMed ID: 23971976 [TBL] [Abstract][Full Text] [Related]
23. Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model. Thomann M; Krause C; Angrisani N; Bormann D; Hassel T; Windhagen H; Meyer-Lindenberg A J Biomed Mater Res A; 2010 Jun; 93(4):1609-19. PubMed ID: 20073078 [TBL] [Abstract][Full Text] [Related]
24. Collagen type-I leads to in vivo matrix mineralization and secondary stabilization of Mg-Zr-Ca alloy implants. Mushahary D; Wen C; Kumar JM; Lin J; Harishankar N; Hodgson P; Pande G; Li Y Colloids Surf B Biointerfaces; 2014 Oct; 122():719-728. PubMed ID: 25179112 [TBL] [Abstract][Full Text] [Related]
25. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration. Shen X; Zhang Y; Ma P; Sutrisno L; Luo Z; Hu Y; Yu Y; Tao B; Li C; Cai K Biomaterials; 2019 Aug; 212():1-16. PubMed ID: 31100479 [TBL] [Abstract][Full Text] [Related]
26. Osseointegration of commercial microstructured titanium implants incorporating magnesium: a histomorphometric study in rabbit cancellous bone. Park JW; An CH; Jeong SH; Suh JY Clin Oral Implants Res; 2012 Mar; 23(3):294-300. PubMed ID: 21435010 [TBL] [Abstract][Full Text] [Related]
27. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies. Qin Y; Liu A; Guo H; Shen Y; Wen P; Lin H; Xia D; Voshage M; Tian Y; Zheng Y Acta Biomater; 2022 Jun; 145():403-415. PubMed ID: 35381400 [TBL] [Abstract][Full Text] [Related]
28. Biocompatibility and strength retention of biodegradable Mg-Ca-Zn alloy bone implants. Cho SY; Chae SW; Choi KW; Seok HK; Kim YC; Jung JY; Yang SJ; Kwon GJ; Kim JT; Assad M J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):201-12. PubMed ID: 23115061 [TBL] [Abstract][Full Text] [Related]
29. In Vivo and In Vitro Analyses of Titanium-Hydroxyapatite Functionally Graded Material for Dental Implants. Wang X; Wan C; Feng X; Zhao F; Wang H Biomed Res Int; 2021; 2021():8859945. PubMed ID: 34036104 [TBL] [Abstract][Full Text] [Related]
30. Bone-implant degradation and mechanical response of bone surrounding Mg-alloy implants. Meischel M; Hörmann D; Draxler J; Tschegg EK; Eichler J; Prohaska T; Stanzl-Tschegg SE J Mech Behav Biomed Mater; 2017 Jul; 71():307-313. PubMed ID: 28390303 [TBL] [Abstract][Full Text] [Related]
31. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Bornapour M; Celikin M; Cerruti M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378 [TBL] [Abstract][Full Text] [Related]
33. The role of zinc in the biocorrosion behavior of resorbable Mg‒Zn‒Ca alloys. Cihova M; Martinelli E; Schmutz P; Myrissa A; Schäublin R; Weinberg AM; Uggowitzer PJ; Löffler JF Acta Biomater; 2019 Dec; 100():398-414. PubMed ID: 31539653 [TBL] [Abstract][Full Text] [Related]
34. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729 [TBL] [Abstract][Full Text] [Related]
35. Surface Modification of Titanium with BMP-2/GDF-5 by a Heparin Linker and Its Efficacy as a Dental Implant. Yang DH; Moon SW; Lee DW Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28124978 [TBL] [Abstract][Full Text] [Related]
36. Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2. Kleer-Reiter N; Julmi S; Feichtner F; Waselau AC; Klose C; Wriggers P; Maier HJ; Meyer-Lindenberg A Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33827052 [TBL] [Abstract][Full Text] [Related]
37. Effect of strontium surface-functionalized implants on early and late osseointegration: A histological, spectrometric and tomographic evaluation. Offermanns V; Andersen OZ; Riede G; Sillassen M; Jeppesen CS; Almtoft KP; Talasz H; Öhman-Mägi C; Lethaus B; Tolba R; Kloss F; Foss M Acta Biomater; 2018 Mar; 69():385-394. PubMed ID: 29425718 [TBL] [Abstract][Full Text] [Related]
38. Enhancement of local bone formation on titanium implants in osteoporotic rats by biomimetic multilayered structures containing parathyroid hormone (PTH)-related protein. Tang J; Yan D; Chen L; Shen Z; Wang B; Weng S; Wu Z; Xie Z; Fang K; Hong C; Xie J; Yang L; Shen L Biomed Mater; 2020 Jun; 15(4):045011. PubMed ID: 32109901 [TBL] [Abstract][Full Text] [Related]
39. Stimulation of bone growth following zinc incorporation into biomaterials. Qiao Y; Zhang W; Tian P; Meng F; Zhu H; Jiang X; Liu X; Chu PK Biomaterials; 2014 Aug; 35(25):6882-97. PubMed ID: 24862443 [TBL] [Abstract][Full Text] [Related]
40. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration. Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]