These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36669616)

  • 1. How salience enhances inhibitory control: An analysis of electro-cortical mechanisms.
    Kenemans JL; Schutte I; Van Bijnen S; Logemann HNA
    Biol Psychol; 2023 Feb; 177():108505. PubMed ID: 36669616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioural and ERP indices of response inhibition during a Stop-signal task in children with two subtypes of Attention-Deficit Hyperactivity Disorder.
    Johnstone SJ; Barry RJ; Clarke AR
    Int J Psychophysiol; 2007 Oct; 66(1):37-47. PubMed ID: 17604142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of stop-signal and Go/Nogo response inhibition in children aged 7-12 years: performance and event-related potential indices.
    Johnstone SJ; Dimoska A; Smith JL; Barry RJ; Pleffer CB; Chiswick D; Clarke AR
    Int J Psychophysiol; 2007 Jan; 63(1):25-38. PubMed ID: 16919346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response inhibition of children with ADHD in the stop-signal task: an event-related potential study.
    Senderecka M; Grabowska A; Szewczyk J; Gerc K; Chmylak R
    Int J Psychophysiol; 2012 Jul; 85(1):93-105. PubMed ID: 21641941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ERP components associated with successful and unsuccessful stopping in a stop-signal task.
    Kok A; Ramautar JR; De Ruiter MB; Band GP; Ridderinkhof KR
    Psychophysiology; 2004 Jan; 41(1):9-20. PubMed ID: 14692996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory-control event-related potentials correlate with individual differences in alcohol use.
    O'Halloran L; Rueda-Delgado LM; Jollans L; Cao Z; Boyle R; Vaughan C; Coey P; Whelan R
    Addict Biol; 2020 Mar; 25(2):e12729. PubMed ID: 30919532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the stop-signal modality on brain electrical activity associated with suppression of ongoing actions.
    Carrillo-de-la-Peña MT; Bonilla FM; González-Villar AJ
    Biol Psychol; 2019 Apr; 143():85-92. PubMed ID: 30807785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconsidering electrophysiological markers of response inhibition in light of trigger failures in the stop-signal task.
    Skippen P; Fulham WR; Michie PT; Matzke D; Heathcote A; Karayanidis F
    Psychophysiology; 2020 Oct; 57(10):e13619. PubMed ID: 32725926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The P300 as marker of inhibitory control - Fact or fiction?
    Huster RJ; Messel MS; Thunberg C; Raud L
    Cortex; 2020 Nov; 132():334-348. PubMed ID: 33017748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages.
    Tatz JR; Soh C; Wessel JR
    J Neurosci; 2021 Oct; 41(42):8826-8838. PubMed ID: 34493541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory and cross-network contributions to response inhibition in patients with schizophrenia.
    Hoptman MJ; Parker EM; Nair-Collins S; Dias EC; Ross ME; DiCostanzo JN; Sehatpour P; Javitt DC
    Neuroimage Clin; 2018; 18():31-39. PubMed ID: 29868440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common neural processes during action-stopping and infrequent stimulus detection: The frontocentral P3 as an index of generic motor inhibition.
    Waller DA; Hazeltine E; Wessel JR
    Int J Psychophysiol; 2021 May; 163():11-21. PubMed ID: 30659867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of stop-signal modality on the N2/P3 complex elicited in the stop-signal paradigm.
    Ramautar JR; Kok A; Ridderinkhof KR
    Biol Psychol; 2006 Apr; 72(1):96-109. PubMed ID: 16157441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hold your horses: Differences in EEG correlates of inhibition in cancelling and stopping an action.
    Hervault M; Zanone PG; Buisson JC; Huys R
    Neuropsychologia; 2022 Jul; 172():108255. PubMed ID: 35513065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between ERP components and EEG spatial complexity in a visual Go/Nogo task.
    Jia H; Li H; Yu D
    J Neurophysiol; 2017 Jan; 117(1):275-283. PubMed ID: 27784803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-density ERP study reveals latency, amplitude, and topographical differences in multiple sclerosis patients versus controls.
    Whelan R; Lonergan R; Kiiski H; Nolan H; Kinsella K; Bramham J; O'Brien M; Reilly RB; Hutchinson M; Tubridy N
    Clin Neurophysiol; 2010 Sep; 121(9):1420-1426. PubMed ID: 20381418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG signatures associated with stopping are sensitive to preparation.
    Greenhouse I; Wessel JR
    Psychophysiology; 2013 Sep; 50(9):900-8. PubMed ID: 23763667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated.
    Ramautar JR; Kok A; Ridderinkhof KR
    Brain Cogn; 2004 Nov; 56(2):234-52. PubMed ID: 15518938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Temporal Dynamics of Response Inhibition and their Modulation by Cognitive Control.
    Raud L; Huster RJ
    Brain Topogr; 2017 Jul; 30(4):486-501. PubMed ID: 28456867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.