These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 36669674)
1. Studies on the interaction of five triazole fungicides with human renal transporters in cells. Nie J; Zhou J; Shen Y; Lin R; Hu H; Zeng K; Bi H; Huang M; Yu L; Zeng S; Miao J Toxicol In Vitro; 2023 Apr; 88():105555. PubMed ID: 36669674 [TBL] [Abstract][Full Text] [Related]
2. Raltegravir has a low propensity to cause clinical drug interactions through inhibition of major drug transporters: an in vitro evaluation. Rizk ML; Houle R; Chan GH; Hafey M; Rhee EG; Chu X Antimicrob Agents Chemother; 2014; 58(3):1294-301. PubMed ID: 24295974 [TBL] [Abstract][Full Text] [Related]
3. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity. Lv X; Pan L; Wang J; Lu L; Yan W; Zhu Y; Xu Y; Guo M; Zhuang S Environ Pollut; 2017 Mar; 222():504-512. PubMed ID: 28012672 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of human drug transporter activities by succinate dehydrogenase inhibitors. Kerhoas M; Le Vée M; Carteret J; Jouan E; Tastet V; Bruyère A; Huc L; Fardel O Chemosphere; 2024 Jun; 358():142122. PubMed ID: 38663675 [TBL] [Abstract][Full Text] [Related]
5. Interactions between Oroxylin A with the solute carrier transporters and ATP-binding cassette transporters: Drug transporters profile for this flavonoid. Ren G; Qin Z; Yang N; Chen H; Fu K; Lu C; Lu Y; Li N; Zhang Y; Chen X; Zhao D Chem Biol Interact; 2020 Jun; 324():109097. PubMed ID: 32305507 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the cellular transport mechanisms for the anti-cachexia candidate compound TCMCB07. Hu Y; Gruber KA; Smith DE J Cachexia Sarcopenia Muscle; 2020 Dec; 11(6):1677-1687. PubMed ID: 32725770 [TBL] [Abstract][Full Text] [Related]
7. Interactions Between Meropenem and Renal Drug Transporters. Dong J; Liu Y; Li L; Ding Y; Qian J; Jiao Z Curr Drug Metab; 2022 Aug; 23(5):423-431. PubMed ID: 35490314 [TBL] [Abstract][Full Text] [Related]
8. In vitro assessment of the roles of drug transporters in the disposition and drug-drug interaction potential of olaparib. McCormick A; Swaisland H Xenobiotica; 2017 Oct; 47(10):903-915. PubMed ID: 27684210 [TBL] [Abstract][Full Text] [Related]
9. The Nonmetabolized β-Blocker Nadolol Is a Substrate of OCT1, OCT2, MATE1, MATE2-K, and P-Glycoprotein, but Not of OATP1B1 and OATP1B3. Misaka S; Knop J; Singer K; Hoier E; Keiser M; Müller F; Glaeser H; König J; Fromm MF Mol Pharm; 2016 Feb; 13(2):512-9. PubMed ID: 26702643 [TBL] [Abstract][Full Text] [Related]
10. Renal tubular secretion of tanshinol: molecular mechanisms, impact on its systemic exposure, and propensity for dose-related nephrotoxicity and for renal herb-drug interactions. Jia W; Du F; Liu X; Jiang R; Xu F; Yang J; Li L; Wang F; Olaleye OE; Dong J; Li C Drug Metab Dispos; 2015 May; 43(5):669-78. PubMed ID: 25710938 [TBL] [Abstract][Full Text] [Related]
11. Prediction of clinical drug-drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). Kikuchi R; Lao Y; Bow DA; Chiou WJ; Andracki ME; Carr RA; Voorman RL; De Morais SM J Pharm Sci; 2013 Dec; 102(12):4426-32. PubMed ID: 24122511 [TBL] [Abstract][Full Text] [Related]
13. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Müller F; König J; Hoier E; Mandery K; Fromm MF Biochem Pharmacol; 2013 Sep; 86(6):808-15. PubMed ID: 23876341 [TBL] [Abstract][Full Text] [Related]
14. Abundance of Drug Transporters in the Human Kidney Cortex as Quantified by Quantitative Targeted Proteomics. Prasad B; Johnson K; Billington S; Lee C; Chung GW; Brown CD; Kelly EJ; Himmelfarb J; Unadkat JD Drug Metab Dispos; 2016 Dec; 44(12):1920-1924. PubMed ID: 27621205 [TBL] [Abstract][Full Text] [Related]
15. The interactions of lenalidomide with human uptake and efflux transporters and UDP-glucuronosyltransferase 1A1: lack of potential for drug-drug interactions. Tong Z; Yerramilli U; Surapaneni S; Kumar G Cancer Chemother Pharmacol; 2014 Apr; 73(4):869-74. PubMed ID: 24627218 [TBL] [Abstract][Full Text] [Related]
16. Abundant Expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1, and xCT Transporters in Blood-Arachnoid Barrier of Pig and Polarized Localizations at CSF- and Blood-Facing Plasma Membranes. Uchida Y; Goto R; Takeuchi H; Łuczak M; Usui T; Tachikawa M; Terasaki T Drug Metab Dispos; 2020 Feb; 48(2):135-145. PubMed ID: 31771948 [TBL] [Abstract][Full Text] [Related]
17. Mirogabalin, a novel α Yamamura N; Mikkaichi T; Itokawa KI; Hoshi M; Damme K; Geigner S; Baumhauer C Xenobiotica; 2022; 52(9-11):997-1009. PubMed ID: 36170033 [TBL] [Abstract][Full Text] [Related]
18. Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition. Hanna I; Alexander N; Crouthamel MH; Davis J; Natrillo A; Tran P; Vapurcuyan A; Zhu B Xenobiotica; 2018 Mar; 48(3):300-313. PubMed ID: 28281384 [TBL] [Abstract][Full Text] [Related]
19. In vitro cytochrome P450- and transporter-mediated drug interaction potential of 6β-hydroxy-21-desacetyl deflazacort-A major human metabolite of deflazacort. Ma J; Beers B; Manohar R; Roe S; Colacino JM; Kong R Pharmacol Res Perspect; 2021 Apr; 9(2):e00748. PubMed ID: 33749127 [TBL] [Abstract][Full Text] [Related]
20. Interactions of bilastine, a new oral H₁ antihistamine, with human transporter systems. Lucero ML; Gonzalo A; Ganza A; Leal N; Soengas I; Ioja E; Gedey S; Jahic M; Bednarczyk D Drug Chem Toxicol; 2012 Jun; 35 Suppl 1():8-17. PubMed ID: 22616811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]