BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 36669745)

  • 1. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol.
    Ndubuisi IA; Amadi CO; Nwagu TN; Murata Y; Ogbonna JC
    Biotechnol Adv; 2023; 63():108100. PubMed ID: 36669745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.
    Radecka D; Mukherjee V; Mateo RQ; Stojiljkovic M; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26126524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
    Bera AK; Ho NW; Khan A; Sedlak M
    J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae.
    Almeida JR; Runquist D; Sànchez i Nogué V; Lidén G; Gorwa-Grauslund MF
    Biotechnol J; 2011 Mar; 6(3):286-99. PubMed ID: 21305697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards industrial pentose-fermenting yeast strains.
    Hahn-Hägerdal B; Karhumaa K; Fonseca C; Spencer-Martins I; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Apr; 74(5):937-53. PubMed ID: 17294186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
    Madhavan A; Srivastava A; Kondo A; Bisaria VS
    Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
    Wang C; Li H; Xu L; Shen Y; Hou J; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Xylose Metabolism by a
    Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates.
    Oreb M; Dietz H; Farwick A; Boles E
    Bioengineered; 2012; 3(6):347-51. PubMed ID: 22892590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of Second Generation Bioethanol Production from Residual Biomass.
    Robak K; Balcerek M
    Food Technol Biotechnol; 2018 Jun; 56(2):174-187. PubMed ID: 30228792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses.
    Hasunuma T; Hori Y; Sakamoto T; Ochiai M; Hatanaka H; Kondo A
    Microb Cell Fact; 2014 Oct; 13():145. PubMed ID: 25306430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains.
    Karhumaa K; Wiedemann B; Hahn-Hägerdal B; Boles E; Gorwa-Grauslund MF
    Microb Cell Fact; 2006 Apr; 5():18. PubMed ID: 16606456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives.
    Matsushika A; Inoue H; Kodaki T; Sawayama S
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):37-53. PubMed ID: 19572128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
    Ghosh A; Zhao H; Price ND
    PLoS One; 2011; 6(11):e27316. PubMed ID: 22076150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeasts in sustainable bioethanol production: A review.
    Mohd Azhar SH; Abdulla R; Jambo SA; Marbawi H; Gansau JA; Mohd Faik AA; Rodrigues KF
    Biochem Biophys Rep; 2017 Jul; 10():52-61. PubMed ID: 29114570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Pentose Transport in
    Nijland JG; Driessen AJM
    Front Bioeng Biotechnol; 2019; 7():464. PubMed ID: 32064252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass.
    Sato TK; Liu T; Parreiras LS; Williams DL; Wohlbach DJ; Bice BD; Ong IM; Breuer RJ; Qin L; Busalacchi D; Deshpande S; Daum C; Gasch AP; Hodge DB
    Appl Environ Microbiol; 2014 Jan; 80(2):540-54. PubMed ID: 24212571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current status of metabolic engineering of microorganisms for bioethanol production by effective utilization of pentose sugars of lignocellulosic biomass.
    Saxena A; Hussain A; Parveen F; Ashfaque M
    Microbiol Res; 2023 Nov; 276():127478. PubMed ID: 37625339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.