BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36669976)

  • 1. Computational and artificial intelligence-based methods for antibody development.
    Kim J; McFee M; Fang Q; Abdin O; Kim PM
    Trends Pharmacol Sci; 2023 Mar; 44(3):175-189. PubMed ID: 36669976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating antibody discovery and design with artificial intelligence: Recent advances and prospects.
    Bai G; Sun C; Guo Z; Wang Y; Zeng X; Su Y; Zhao Q; Ma B
    Semin Cancer Biol; 2023 Oct; 95():13-24. PubMed ID: 37355214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hallucinating structure-conditioned antibody libraries for target-specific binders.
    Mahajan SP; Ruffolo JA; Frick R; Gray JJ
    Front Immunol; 2022; 13():999034. PubMed ID: 36341416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downsizing antibodies: Towards complementarity-determining region (CDR)-based peptide mimetics.
    Van Holsbeeck K; Martins JC; Ballet S
    Bioorg Chem; 2022 Feb; 119():105563. PubMed ID: 34942468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Antibody Affinity and Developability Using a Framework-CDR Shuffling Approach-Application to an Anti-SARS-CoV-2 Antibody.
    Gopal R; Fitzpatrick E; Pentakota N; Jayaraman A; Tharakaraman K; Capila I
    Viruses; 2022 Nov; 14(12):. PubMed ID: 36560698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery.
    Wilman W; Wróbel S; Bielska W; Deszynski P; Dudzic P; Jaszczyszyn I; Kaniewski J; Młokosiewicz J; Rouyan A; Satława T; Kumar S; Greiff V; Krawczyk K
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35830864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops.
    Boughter CT; Borowska MT; Guthmiller JJ; Bendelac A; Wilson PC; Roux B; Adams EJ
    Elife; 2020 Nov; 9():. PubMed ID: 33169668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery.
    Pasrija P; Jha P; Upadhyaya P; Khan MS; Chopra M
    Curr Top Med Chem; 2022; 22(20):1692-1727. PubMed ID: 35786336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification.
    Jeliazkov JR; Sljoka A; Kuroda D; Tsuchimura N; Katoh N; Tsumoto K; Gray JJ
    Front Immunol; 2018; 9():413. PubMed ID: 29545810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationalization and design of the complementarity determining region sequences in an antibody-antigen recognition interface.
    Yu CM; Peng HP; Chen IC; Lee YC; Chen JB; Tsai KC; Chen CT; Chang JY; Yang EW; Hsu PC; Jian JW; Hsu HJ; Chang HJ; Hsu WL; Huang KF; Ma AC; Yang AS
    PLoS One; 2012; 7(3):e33340. PubMed ID: 22457753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of artificial intelligence, machine learning and deep learning in oncologic histopathology.
    Sultan AS; Elgharib MA; Tavares T; Jessri M; Basile JR
    J Oral Pathol Med; 2020 Oct; 49(9):849-856. PubMed ID: 32449232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure- and machine learning-guided engineering demonstrate that a non-canonical disulfide in an anti-PD-1 rabbit antibody does not impede antibody developability.
    Liang WC; Xi H; Sun D; D'Ascenzo L; Zarzar J; Stephens N; Cook R; Li Y; Ye Z; Matsumoto M; Payandeh J; Masureel M; Wu Y
    MAbs; 2024; 16(1):2309685. PubMed ID: 38356181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of protein antigens that interact with the CDR H3 loop of HIV broadly neutralizing antibody 2F5.
    Azoitei ML; Ban YA; Kalyuzhny O; Guenaga J; Schroeter A; Porter J; Wyatt R; Schief WR
    Proteins; 2014 Oct; 82(10):2770-82. PubMed ID: 25043744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody humanization by redesign of complementarity-determining region residues proximate to the acceptor framework.
    Hanf KJ; Arndt JW; Chen LL; Jarpe M; Boriack-Sjodin PA; Li Y; van Vlijmen HW; Pepinsky RB; Simon KJ; Lugovskoy A
    Methods; 2014 Jan; 65(1):68-76. PubMed ID: 23816785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-DNA/RNA interactions: Machine intelligence tools and approaches in the era of artificial intelligence and big data.
    Cui F; Zhang Z; Cao C; Zou Q; Chen D; Su X
    Proteomics; 2022 Apr; 22(8):e2100197. PubMed ID: 35112474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of the respective loops at complementarity determining region on the antigen-antibody recognition.
    Osajima T; Hoshino T
    Comput Biol Chem; 2016 Oct; 64():368-383. PubMed ID: 27591792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio structure prediction of the antibody hypervariable H3 loop.
    Zhu K; Day T
    Proteins; 2013 Jun; 81(6):1081-9. PubMed ID: 23255066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine mutations in antibody complementarity-determining regions display context-dependent affinity/specificity trade-offs.
    Tiller KE; Li L; Kumar S; Julian MC; Garde S; Tessier PM
    J Biol Chem; 2017 Oct; 292(40):16638-16652. PubMed ID: 28778924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational and artificial intelligence-based approaches for drug metabolism and transport prediction.
    Dudas B; Miteva MA
    Trends Pharmacol Sci; 2024 Jan; 45(1):39-55. PubMed ID: 38072723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ABlooper: fast accurate antibody CDR loop structure prediction with accuracy estimation.
    Abanades B; Georges G; Bujotzek A; Deane CM
    Bioinformatics; 2022 Mar; 38(7):1877-1880. PubMed ID: 35099535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.