These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 3667023)
1. Oxygen consumption, lactate accumulation, and sympathetic response during prolonged exercise under hypoxia. Bouissou P; Guezennec CY; Defer G; Pesquies P Int J Sports Med; 1987 Aug; 8(4):266-9. PubMed ID: 3667023 [TBL] [Abstract][Full Text] [Related]
2. Gas exchange, blood lactate, and plasma catecholamines during incremental exercise in hypoxia and normoxia. Hughson RL; Green HJ; Sharratt MT J Appl Physiol (1985); 1995 Oct; 79(4):1134-41. PubMed ID: 8567554 [TBL] [Abstract][Full Text] [Related]
3. Beta-adrenergic or parasympathetic inhibition, heart rate and cardiac output during normoxic and acute hypoxic exercise in humans. Hopkins SR; Bogaard HJ; Niizeki K; Yamaya Y; Ziegler MG; Wagner PD J Physiol; 2003 Jul; 550(Pt 2):605-16. PubMed ID: 12766243 [TBL] [Abstract][Full Text] [Related]
4. Fluid-electrolyte shift and renin-aldosterone responses to exercise under hypoxia. Bouissou P; Peronnet F; Brisson G; Helie R; Ledoux M Horm Metab Res; 1987 Jul; 19(7):331-4. PubMed ID: 3305278 [TBL] [Abstract][Full Text] [Related]
5. Severe hypoxia decreases oxygen uptake relative to intensity during submaximal graded exercise. Ibañez J; Rama R; Riera M; Prats MT; Palacios L Eur J Appl Physiol Occup Physiol; 1993; 67(1):7-13. PubMed ID: 8375369 [TBL] [Abstract][Full Text] [Related]
6. Submaximal exercise quantified as percent of normoxic and hyperoxic maximum oxygen uptakes. Byrnes WC; Mihevic PM; Freedson PS; Horvath SM Med Sci Sports Exerc; 1984 Dec; 16(6):572-7. PubMed ID: 6513775 [TBL] [Abstract][Full Text] [Related]
7. The influence of acute and 23 days of intermittent hypoxic exposures on the exercise-induced forehead sweating response. Kacin A; Golja P; Eiken O; Tipton MJ; Mekjavic IB Eur J Appl Physiol; 2007 Mar; 99(5):557-66. PubMed ID: 17242947 [TBL] [Abstract][Full Text] [Related]
8. Effect of hypoxia on muscle oxygenation and metabolism during arm exercise in humans. Jensen-Urstad M; Hallbäck I; Sahlin K Clin Physiol; 1995 Jan; 15(1):27-37. PubMed ID: 7712690 [TBL] [Abstract][Full Text] [Related]
9. Arterial blood gases, acid-base balance, and lactate and gas exchange variables during hypoxic exercise. Yoshida T; Udo M; Chida M; Makiguchi K; Ichioka M; Muraoka I Int J Sports Med; 1989 Aug; 10(4):279-85. PubMed ID: 2514152 [TBL] [Abstract][Full Text] [Related]
10. [Relation between the change of slope of heart rate and second lactic and ventilatory thresholds in muscular exercise with large load]. Ahmaidi S; Varray A; Collomp K; Mercier J; Préfaut C C R Seances Soc Biol Fil; 1992; 186(1-2):145-55. PubMed ID: 1450988 [TBL] [Abstract][Full Text] [Related]
11. Cardiorespiratory, hormonal and haematological responses to submaximal cycling performed 2 days after eccentric or concentric exercise bouts. Gleeson M; Blannin AK; Zhu B; Brooks S; Cave R J Sports Sci; 1995 Dec; 13(6):471-9. PubMed ID: 8850573 [TBL] [Abstract][Full Text] [Related]
12. Relationship among blood lactate and plasma catecholamine levels during exercise in acute hypoxia. Takahashi H; Irizawa M; Komura T; Kikuchi K; Ebisu Y; Nakayama H Appl Human Sci; 1995 Jan; 14(1):49-53. PubMed ID: 7621133 [TBL] [Abstract][Full Text] [Related]
13. Oxygen uptake during submaximal incremental and constant work load exercises in hypoxia. Benoit H; Busso T; Prieur F; Castells J; Freyssenet D; Lacour JR; Denis C; Geyssant A Int J Sports Med; 1997 Feb; 18(2):101-5. PubMed ID: 9081265 [TBL] [Abstract][Full Text] [Related]
14. Response of women mountaineers to maximal exercise during hypoxia. Drinkwater BL; Folinsbee LJ; Bedi JF; Plowman SA; Loucks AB; Horvath SM Aviat Space Environ Med; 1979 Jul; 50(7):657-62. PubMed ID: 486011 [TBL] [Abstract][Full Text] [Related]
15. Heightened Exercise-Induced Oxidative Stress at Simulated Moderate Level Altitude vs. Sea Level in Trained Cyclists. J Wadley A; S Svendsen I; Gleeson M Int J Sport Nutr Exerc Metab; 2017 Apr; 27(2):97-104. PubMed ID: 27710149 [TBL] [Abstract][Full Text] [Related]
16. Influence of caffeine on blood lactate response during incremental exercise. Gaesser GA; Rich RG Int J Sports Med; 1985 Aug; 6(4):207-11. PubMed ID: 4044104 [TBL] [Abstract][Full Text] [Related]
17. Influence of acute normobaric hypoxia on physiological variables and lactate turn point determination in trained men. Ofner M; Wonisch M; Frei M; Tschakert G; Domej W; Kröpfl JM; Hofmann P J Sports Sci Med; 2014 Dec; 13(4):774-81. PubMed ID: 25435769 [TBL] [Abstract][Full Text] [Related]
18. Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude. Brooks GA; Wolfel EE; Butterfield GE; Cymerman A; Roberts AC; Mazzeo RS; Reeves JT Am J Physiol; 1998 Oct; 275(4):R1192-201. PubMed ID: 9756550 [TBL] [Abstract][Full Text] [Related]
19. Lactate, oxygen uptake, and cycling performance in triathletes. O'Toole ML; Douglas PS; Hiller WD Int J Sports Med; 1989 Dec; 10(6):413-8. PubMed ID: 2628359 [TBL] [Abstract][Full Text] [Related]
20. Effects of acute hypobaric hypoxia on the appearance of ingested deuterium from a deuterium oxide-labelled carbohydrate beverage in body fluids of humans during prolonged cycling exercise. Koulmann N; Melin B; Bourdon L; Péronnet F; Jimenez C; Pouzeratte N; Savourey G; Launay JC; Bittel J Eur J Appl Physiol Occup Physiol; 1999 Apr; 79(5):397-403. PubMed ID: 10208247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]