These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36671017)
21. Antioxidant properties of flavonol glycosides from green beans. Plumb GW; Price KR; Williamson G Redox Rep; 1999; 4(3):123-7. PubMed ID: 10496415 [TBL] [Abstract][Full Text] [Related]
22. Quercetin and related flavonoids conserve their antioxidant properties despite undergoing chemical or enzymatic oxidation. Atala E; Fuentes J; Wehrhahn MJ; Speisky H Food Chem; 2017 Nov; 234():479-485. PubMed ID: 28551264 [TBL] [Abstract][Full Text] [Related]
23. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. Wang J; Fang X; Ge L; Cao F; Zhao L; Wang Z; Xiao W PLoS One; 2018; 13(5):e0197563. PubMed ID: 29771951 [TBL] [Abstract][Full Text] [Related]
24. A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. Crespo I; García-Mediavilla MV; Gutiérrez B; Sánchez-Campos S; Tuñón MJ; González-Gallego J Br J Nutr; 2008 Nov; 100(5):968-76. PubMed ID: 18394220 [TBL] [Abstract][Full Text] [Related]
25. Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Wattel A; Kamel S; Mentaverri R; Lorget F; Prouillet C; Petit JP; Fardelonne P; Brazier M Biochem Pharmacol; 2003 Jan; 65(1):35-42. PubMed ID: 12473376 [TBL] [Abstract][Full Text] [Related]
26. Antioxidative compounds from the outer scales of onion. Ly TN; Hazama C; Shimoyamada M; Ando H; Kato K; Yamauchi R J Agric Food Chem; 2005 Oct; 53(21):8183-9. PubMed ID: 16218662 [TBL] [Abstract][Full Text] [Related]
27. Theoretical Study of the Antioxidant Activity of Quercetin Oxidation Products. Vásquez-Espinal A; Yañez O; Osorio E; Areche C; García-Beltrán O; Ruiz LM; Cassels BK; Tiznado W Front Chem; 2019; 7():818. PubMed ID: 31828060 [TBL] [Abstract][Full Text] [Related]
28. Kaempferol attenuates mitochondrial dysfunction and oxidative stress induced by H Yao X; Jiang H; NanXu Y; Piao X; Gao Q; Kim NH Theriogenology; 2019 Sep; 135():174-180. PubMed ID: 31226607 [TBL] [Abstract][Full Text] [Related]
29. Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period method. Fujisawa S; Kadoma Y In Vivo; 2006; 20(1):39-44. PubMed ID: 16433026 [TBL] [Abstract][Full Text] [Related]
30. Supplementation of kaempferol to Zhao Y; Xu Y; Li Y; Jin Q; Sun J; E Z; Gao Q Zygote; 2020 Feb; 28(1):59-64. PubMed ID: 31662136 [TBL] [Abstract][Full Text] [Related]
31. Molecular mechanisms of gastrointestinal protection by quercetin against indomethacin-induced damage: role of NF-κB and Nrf2. Carrasco-Pozo C; Castillo RL; Beltrán C; Miranda A; Fuentes J; Gotteland M J Nutr Biochem; 2016 Jan; 27():289-98. PubMed ID: 26507542 [TBL] [Abstract][Full Text] [Related]
32. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. García-Mediavilla V; Crespo I; Collado PS; Esteller A; Sánchez-Campos S; Tuñón MJ; González-Gallego J Eur J Pharmacol; 2007 Feb; 557(2-3):221-9. PubMed ID: 17184768 [TBL] [Abstract][Full Text] [Related]
33. Assessing Anticancer Potential of Blueberry Flavonoids, Quercetin, Kaempferol, and Gentisic Acid, Through Oxidative Stress and Apoptosis Parameters on HCT-116 Cells. Sezer ED; Oktay LM; Karadadaş E; Memmedov H; Selvi Gunel N; Sözmen E J Med Food; 2019 Nov; 22(11):1118-1126. PubMed ID: 31241392 [TBL] [Abstract][Full Text] [Related]
34. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. Yu J; Wang L; Walzem RL; Miller EG; Pike LM; Patil BS J Agric Food Chem; 2005 Mar; 53(6):2009-14. PubMed ID: 15769128 [TBL] [Abstract][Full Text] [Related]
35. Effect of quercetin, genistein and kaempferol on glutathione and glutathione-redox cycle enzymes in 3T3-L1 preadipocytes. Boadi WY; Amartey PK; Lo A Drug Chem Toxicol; 2016; 39(3):239-47. PubMed ID: 27063963 [TBL] [Abstract][Full Text] [Related]
36. Effect of Zinc (II) on the interactions of bovine serum albumin with flavonols bearing different number of hydroxyl substituent on B-ring. Cao S; Jiang X; Chen J J Inorg Biochem; 2010 Feb; 104(2):146-52. PubMed ID: 19932510 [TBL] [Abstract][Full Text] [Related]
37. Effects of Quercetin, Kaempferol, and Exogenous Glutathione on Phospho- and Total-AKT in 3T3-L1 Preadipocytes. Boadi WY; Lo A J Diet Suppl; 2018 Nov; 15(6):814-826. PubMed ID: 29345961 [TBL] [Abstract][Full Text] [Related]
38. Protection of burn-induced skin injuries by the flavonoid kaempferol. Park BK; Lee S; Seo JN; Rhee JW; Park JB; Kim YS; Choi IG; Kim YE; Lee Y; Kwon HJ BMB Rep; 2010 Jan; 43(1):46-51. PubMed ID: 20132735 [TBL] [Abstract][Full Text] [Related]