These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36671179)

  • 1. Obtaining efficient collisional engines via velocity-dependent drivings.
    Mamede IN; Stable ALL; Fiore CE
    Phys Rev E; 2022 Dec; 106(6-1):064125. PubMed ID: 36671179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics and efficiency of sequentially collisional Brownian particles: The role of drivings.
    Filho FS; Akasaki BAN; Noa CEF; Cleuren B; Fiore CE
    Phys Rev E; 2022 Oct; 106(4-1):044134. PubMed ID: 36397557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obtaining efficient thermal engines from interacting Brownian particles under time-periodic drivings.
    Mamede IN; Harunari PE; Akasaki BAN; Proesmans K; Fiore CE
    Phys Rev E; 2022 Feb; 105(2-1):024106. PubMed ID: 35291114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of a minimal interacting heat engine: Comparison between engine designs.
    Hawthorne F; Cleuren B; Fiore CE
    Phys Rev E; 2024 Jun; 109(6-1):064120. PubMed ID: 39020975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles.
    Frim AG; DeWeese MR
    Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the self-propulsion parity on the efficiency of a fuel-consuming active heat engine.
    Oh Y; Baek Y
    Phys Rev E; 2023 Aug; 108(2-1):024602. PubMed ID: 37723679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-dissipation engines: Microscopic construction via shortcuts to adiabaticity and isothermality, the optimal relation between power and efficiency.
    Zhao XH; Gong ZN; Tu ZC
    Phys Rev E; 2022 Dec; 106(6-1):064117. PubMed ID: 36671114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling thermodynamics of a quantum heat engine with modulated amplitude drivings.
    Giri SK; Goswami HP
    Phys Rev E; 2022 Aug; 106(2-1):024131. PubMed ID: 36109996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropy production and heat transport in harmonic chains under time-dependent periodic drivings.
    Akasaki BAN; de Oliveira MJ; Fiore CE
    Phys Rev E; 2020 Jan; 101(1-1):012132. PubMed ID: 32069596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of an active heat engine.
    Gronchi G; Puglisi A
    Phys Rev E; 2021 May; 103(5-1):052134. PubMed ID: 34134299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two coupled, driven Ising spin systems working as an engine.
    Basu D; Nandi J; Jayannavar AM; Marathe R
    Phys Rev E; 2017 May; 95(5-1):052123. PubMed ID: 28618631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic thermodynamics, fluctuation theorems and molecular machines.
    Seifert U
    Rep Prog Phys; 2012 Dec; 75(12):126001. PubMed ID: 23168354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012129. PubMed ID: 24580194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realization of a Brownian engine to study transport phenomena: a semiclassical approach.
    Ghosh P; Shit A; Chattopadhyay S; Chaudhuri JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061112. PubMed ID: 20866383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic thermodynamics of active Brownian particles.
    Ganguly C; Chaudhuri D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032102. PubMed ID: 24125209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine.
    Izumida Y
    Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.