BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36671392)

  • 21. Modulation of sarcoplasmic reticulum Ca2+ release by glycolysis in cat atrial myocytes.
    Kockskämper J; Zima AV; Blatter LA
    J Physiol; 2005 May; 564(Pt 3):697-714. PubMed ID: 15695247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts.
    Hohendanner F; Walther S; Maxwell JT; Kettlewell S; Awad S; Smith GL; Lonchyna VA; Blatter LA
    J Physiol; 2015 Mar; 593(6):1459-77. PubMed ID: 25416623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death.
    Belevych AE; Terentyev D; Viatchenko-Karpinski S; Terentyeva R; Sridhar A; Nishijima Y; Wilson LD; Cardounel AJ; Laurita KR; Carnes CA; Billman GE; Gyorke S
    Cardiovasc Res; 2009 Dec; 84(3):387-95. PubMed ID: 19617226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms by which cytoplasmic calcium wave propagation and alternans are generated in cardiac atrial myocytes lacking T-tubules-insights from a simulation study.
    Li Q; O'Neill SC; Tao T; Li Y; Eisner D; Zhang H
    Biophys J; 2012 Apr; 102(7):1471-82. PubMed ID: 22500747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased Risk for Atrial Alternans in Rabbit Heart Failure: The Role of Ca
    Kanaporis G; Blatter LA
    Biomolecules; 2023 Dec; 14(1):. PubMed ID: 38254653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation and propagation of Ca(2+) release during excitation-contraction coupling in atrial myocytes.
    Kockskämper J; Sheehan KA; Bare DJ; Lipsius SL; Mignery GA; Blatter LA
    Biophys J; 2001 Nov; 81(5):2590-605. PubMed ID: 11606273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes.
    Maxwell JT; Blatter LA
    J Physiol; 2012 Dec; 590(23):6037-45. PubMed ID: 22988145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disrupted calcium release as a mechanism for atrial alternans associated with human atrial fibrillation.
    Chang KC; Bayer JD; Trayanova NA
    PLoS Comput Biol; 2014 Dec; 10(12):e1004011. PubMed ID: 25501557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents.
    Livshitz LM; Rudy Y
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2854-66. PubMed ID: 17277017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heart failure-induced atrial remodelling promotes electrical and conduction alternans.
    Zhao N; Li Q; Zhang K; Wang K; He R; Yuan Y; Zhang H
    PLoS Comput Biol; 2020 Jul; 16(7):e1008048. PubMed ID: 32658888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes.
    Oropeza-Almazán Y; Blatter LA
    Biomolecules; 2024 Jan; 14(2):. PubMed ID: 38397381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ca(2+)-activated chloride channel activity during Ca(2+) alternans in ventricular myocytes.
    Kanaporis G; Blatter LA
    Channels (Austin); 2016 Nov; 10(6):507-17. PubMed ID: 27356267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling.
    Nivala M; Song Z; Weiss JN; Qu Z
    J Mol Cell Cardiol; 2015 Feb; 79():32-41. PubMed ID: 25450613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excitation-contraction coupling and calcium release in atrial muscle.
    Blatter LA; Kanaporis G; Martinez-Hernandez E; Oropeza-Almazan Y; Banach K
    Pflugers Arch; 2021 Mar; 473(3):317-329. PubMed ID: 33398498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Are SR Ca content fluctuations or SR refractoriness the key to atrial cardiac alternans?: insights from a human atrial model.
    Lugo CA; Cantalapiedra IR; Peñaranda A; Hove-Madsen L; Echebarria B
    Am J Physiol Heart Circ Physiol; 2014 Jun; 306(11):H1540-52. PubMed ID: 24610921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of membrane potential, SR Ca2+ content and RyR responsiveness on systolic Ca2+ alternans in rat ventricular myocytes.
    Li Y; Díaz ME; Eisner DA; O'Neill S
    J Physiol; 2009 Mar; 587(Pt 6):1283-92. PubMed ID: 19153161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dependency of calcium alternans on ryanodine receptor refractoriness.
    Alvarez-Lacalle E; Cantalapiedra IR; Peñaranda A; Cinca J; Hove-Madsen L; Echebarria B
    PLoS One; 2013; 8(2):e55042. PubMed ID: 23390511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of mitochondrial uncoupling on Ca(2+) signaling during excitation-contraction coupling in atrial myocytes.
    Zima AV; Pabbidi MR; Lipsius SL; Blatter LA
    Am J Physiol Heart Circ Physiol; 2013 Apr; 304(7):H983-93. PubMed ID: 23376829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans.
    Díaz ME; O'Neill SC; Eisner DA
    Circ Res; 2004 Mar; 94(5):650-6. PubMed ID: 14752033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alternans of cardiac calcium cycling in a cluster of ryanodine receptors: a simulation study.
    Tao T; O'Neill SC; Diaz ME; Li YT; Eisner DA; Zhang H
    Am J Physiol Heart Circ Physiol; 2008 Aug; 295(2):H598-609. PubMed ID: 18515647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.