These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36671507)

  • 21. A Hybrid Docking and Machine Learning Approach to Enhance the Performance of Virtual Screening Carried out on Protein-Protein Interfaces.
    Singh N; Villoutreix BO
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy or novelty: what can we gain from target-specific machine-learning-based scoring functions in virtual screening?
    Shen C; Weng G; Zhang X; Leung EL; Yao X; Pang J; Chai X; Li D; Wang E; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33418562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Data Mining Meets Machine Learning: A Novel ANN-based Multi-body Interaction Docking Scoring Function (MBI-score) Based on Utilizing Frequent Geometric and Chemical Patterns of Interfacial Atoms in Native Protein-ligand Complexes.
    Khashan R; Tropsha A; Zheng W
    Mol Inform; 2022 Aug; 41(8):e2100248. PubMed ID: 35142086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An interaction-motif-based scoring function for protein-ligand docking.
    Xie ZR; Hwang MJ
    BMC Bioinformatics; 2010 Jun; 11():298. PubMed ID: 20525216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.
    Hou Q; Lensink MF; Heringa J; Feenstra KA
    PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A machine learning approach for ranking clusters of docked protein-protein complexes by pairwise cluster comparison.
    Pfeiffenberger E; Chaleil RA; Moal IH; Bates PA
    Proteins; 2017 Mar; 85(3):528-543. PubMed ID: 27935158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iterative Knowledge-Based Scoring Function for Protein-Ligand Interactions by Considering Binding Affinity Information.
    Zhao X; Li H; Zhang K; Huang SY
    J Phys Chem B; 2023 Oct; 127(42):9021-9034. PubMed ID: 37822259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scoring docking conformations using predicted protein interfaces.
    Esmaielbeiki R; Nebel JC
    BMC Bioinformatics; 2014 Jun; 15():171. PubMed ID: 24906633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring.
    Ye WL; Shen C; Xiong GL; Ding JJ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2020 Sep; 60(9):4216-4230. PubMed ID: 32352294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DockingApp RF: A State-of-the-Art Novel Scoring Function for Molecular Docking in a User-Friendly Interface to AutoDock Vina.
    Macari G; Toti D; Pasquadibisceglie A; Polticelli F
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pair Potentials as Machine Learning Features.
    Pei J; Song LF; Merz KM
    J Chem Theory Comput; 2020 Aug; 16(8):5385-5400. PubMed ID: 32559380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient comprehensive scoring of docked protein complexes using probabilistic support vector machines.
    Martin O; Schomburg D
    Proteins; 2008 Mar; 70(4):1367-78. PubMed ID: 17894343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Small Step Toward Generalizability: Training a Machine Learning Scoring Function for Structure-Based Virtual Screening.
    Scantlebury J; Vost L; Carbery A; Hadfield TE; Turnbull OM; Brown N; Chenthamarakshan V; Das P; Grosjean H; von Delft F; Deane CM
    J Chem Inf Model; 2023 May; 63(10):2960-2974. PubMed ID: 37166179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein-Ligand Scoring Functions.
    Yang C; Zhang Y
    J Chem Inf Model; 2022 Jun; 62(11):2696-2712. PubMed ID: 35579568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.