These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36671573)

  • 1. The Bionic High-Cushioning Midsole of Shoes Inspired by Functional Characteristics of Ostrich Foot.
    Zhang R; Zhao L; Kong Q; Yu G; Yu H; Li J; Tai WH
    Bioengineering (Basel); 2022 Dec; 10(1):. PubMed ID: 36671573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization Design of the Inner Structure for a Bioinspired Heel Pad with Distinct Cushioning Property.
    Jin J; Wang K; Ren L; Qian Z; Lu X; Liang W; Xu X; Zhao S; Zhao D; Wang X; Ren L
    Bioengineering (Basel); 2022 Dec; 10(1):. PubMed ID: 36671620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on bio-inspired feet based on the cushioning and shock absorption characteristics of the ostrich foot.
    Han D; Zhang R; Yu G; Jiang L; Li D; Li J
    PLoS One; 2020; 15(7):e0236324. PubMed ID: 32706841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Bionic Foot Inspired by the Anti-Slip Cushioning Mechanism of Yak Feet.
    Tian W; Zhou K; Chen Z; Shen Z; Wang Z; Jiang L; Cong Q
    Biomimetics (Basel); 2024 Apr; 9(5):. PubMed ID: 38786470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D-Printed Sole Design Bioinspired by Cat Paw Pad and Triply Periodic Minimal Surface for Improving Paratrooper Landing Protection.
    Xiao Y; Hu D; Zhang Z; Pei B; Wu X; Lin P
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CAN RUNNERS PERCEIVE CHANGES IN HEEL CUSHIONING AS THE SHOE AGES WITH INCREASED MILEAGE?
    Cornwall MW; McPoil TG
    Int J Sports Phys Ther; 2017 Aug; 12(4):616-624. PubMed ID: 28900568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of shoe wearing time and midsole hardness on ground reaction forces, ankle stability and perceived comfort in basketball landing.
    Lam WK; Liu H; Wu GQ; Liu ZL; Sun W
    J Sports Sci; 2019 Oct; 37(20):2347-2355. PubMed ID: 31221050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of In-Shoe Midsole Cushioning on Leg Muscle Balance and Co-Contraction with Increased Heel Height During Walking.
    Yick KL; Yeung KL; Wong DP; Lam YN; Ng SP
    J Am Podiatr Med Assoc; 2018 Nov; 108(6):449-457. PubMed ID: 30742514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and perception of basketball landing in various heights and footwear cushioning.
    Wei Q; Wang Z; Woo J; Liebenberg J; Park SK; Ryu J; Lam WK
    PLoS One; 2018; 13(8):e0201758. PubMed ID: 30092009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Analysis of the Bionic Mechanical Foot with High Trafficability on Sand.
    Zhang R; Pang H; Wan H; Han D; Li G; Wen L
    Appl Bionics Biomech; 2020; 2020():3489142. PubMed ID: 32724335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of insoles and additional shock absorption foam on the cushioning properties of sport shoes.
    Chiu HT; Shiang TY
    J Appl Biomech; 2007 May; 23(2):119-27. PubMed ID: 17603131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased vertical impact forces and altered running mechanics with softer midsole shoes.
    Baltich J; Maurer C; Nigg BM
    PLoS One; 2015; 10(4):e0125196. PubMed ID: 25897963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the Innovative Running Shoes With the Special Midsole Structure on the Female Runners' Lower Limb Biomechanics.
    Fu F; Guo L; Tang X; Wang J; Xie Z; Fekete G; Cai Y; Hu Q; Gu Y
    Front Bioeng Biotechnol; 2022; 10():866321. PubMed ID: 35733527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of shoe modifications on biomechanical changes in basketball: A systematic review.
    Lam WK; Kan WH; Chia JS; Kong PW
    Sports Biomech; 2022 May; 21(5):577-603. PubMed ID: 31578122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower-extremity dynamics of walking in neuropathic diabetic patients who wear a forefoot-offloading shoe.
    Bus SA; Maas JC; Otterman NM
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():21-26. PubMed ID: 28985487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Forefoot relief with shoe inserts : Effects of different construction strategies].
    Baur H; Merz N; Muster A; Flückiger G; Hirschmüller A
    Z Rheumatol; 2018 Apr; 77(3):231-239. PubMed ID: 28687865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cushioning versus stability].
    Stüssi E; Stacoff A; Lucchinetti E
    Sportverletz Sportschaden; 1993 Dec; 7(4):167-70. PubMed ID: 8146754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shoe cushioning reduces impact and muscle activation during landings from unexpected, but not self-initiated, drops.
    Fu W; Fang Y; Gu Y; Huang L; Li L; Liu Y
    J Sci Med Sport; 2017 Oct; 20(10):915-920. PubMed ID: 28385562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging of running shoes and its effect on mechanical and biomechanical variables: implications for runners.
    Chambon N; Sevrez V; Ly QH; Guéguen N; Berton E; Rao G
    J Sports Sci; 2014; 32(11):1013-22. PubMed ID: 24576090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The sports shoe].
    Pförringer W; Segesser B
    Orthopade; 1986 Jun; 15(3):260-3. PubMed ID: 2874541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.