BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36671844)

  • 1. Thermo-Visco-Elastometry of RF-Wave-Heated and Ablated Flesh Tissues Containing Au Nanoparticles.
    Kurbanova B; Ashikbayeva Z; Amantayeva A; Sametova A; Blanc W; Gaipov A; Tosi D; Utegulov Z
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Effect Between Laser and Radiofrequency Heating of RGD-Gold Nanospheres on MCF7 Cell Viability.
    Sánchez-Hernández L; Ferro-Flores G; Jiménez-Mancilla NP; Luna-Gutiérrez MA; Santos-Cuevas CL; Ocampo-García BE; Azorín-Vega E; Isaac-Olivé K
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9840-8. PubMed ID: 26682422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-Optic Distributed Sensing Network for Thermal Mapping of Gold Nanoparticles-Mediated Radiofrequency Ablation.
    Sametova A; Kurmashev S; Ashikbayeva Z; Amantayeva A; Blanc W; Atabaev TS; Tosi D
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the heating properties of platinum nanoparticles under a radiofrequency current.
    San BH; Moh SH; Kim KK
    Int J Hyperthermia; 2013; 29(2):99-105. PubMed ID: 23350813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective radiofrequency ablation of tumor by magnetically targeting of multifunctional iron oxide-gold nanohybrid.
    Beyk J; Tavakoli H
    J Cancer Res Clin Oncol; 2019 Sep; 145(9):2199-2209. PubMed ID: 31309302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed 2D temperature sensing during nanoparticles assisted laser ablation by means of high-scattering fiber sensors.
    Ashikbayeva Z; Aitkulov A; Jelbuldina M; Issatayeva A; Beisenova A; Molardi C; Saccomandi P; Blanc W; Inglezakis VJ; Tosi D
    Sci Rep; 2020 Jul; 10(1):12593. PubMed ID: 32724053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed Sensing Network Enabled by High-Scattering MgO-Doped Optical Fibers for 3D Temperature Monitoring of Thermal Ablation in Liver Phantom.
    Beisenova A; Issatayeva A; Ashikbayeva Z; Jelbuldina M; Aitkulov A; Inglezakis V; Blanc W; Saccomandi P; Molardi C; Tosi D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33513666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green-Synthesized Silver Nanoparticle-Assisted Radiofrequency Ablation for Improved Thermal Treatment Distribution.
    Ashikbayeva Z; Aitkulov A; Atabaev TS; Blanc W; Inglezakis VJ; Tosi D
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OCT-guided laser hyperthermia with passively tumor-targeted gold nanoparticles.
    Sirotkina MA; Elagin VV; Shirmanova MV; Bugrova ML; Snopova LB; Kamensky VA; Nadtochenko VA; Denisov NN; Zagaynova EV
    J Biophotonics; 2010 Oct; 3(10-11):718-27. PubMed ID: 20626005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic hyperthermia or radiofrequency electric field hyperthermia of cancerous cells through green-synthesized curcumin-coated gold nanoparticles.
    Rezaeian A; Amini SM; Najafabadi MRH; Farsangi ZJ; Samadian H
    Lasers Med Sci; 2022 Mar; 37(2):1333-1341. PubMed ID: 34406533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luciferase-based protein denaturation assay for quantification of radiofrequency field-induced targeted hyperthermia: developing an intracellular thermometer.
    Raoof M; Zhu C; Kaluarachchi WD; Curley SA
    Int J Hyperthermia; 2012; 28(3):202-9. PubMed ID: 22515341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles.
    Yakunin AN; Avetisyan YA; Tuchin VV
    J Biomed Opt; 2015 May; 20(5):051030. PubMed ID: 25629389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors.
    Beik J; Abed Z; Ghadimi-Daresajini A; Nourbakhsh M; Shakeri-Zadeh A; Ghasemi MS; Shiran MB
    J Therm Biol; 2016 Dec; 62(Pt A):84-89. PubMed ID: 27839555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of absorption of radio frequency field by gold nanoparticles and nanoclusters in biological medium.
    Narasimh An AK; Chakaravarthi G; Rao MSR; Arunachalam K
    Electromagn Biol Med; 2020 Jul; 39(3):183-195. PubMed ID: 32408843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy.
    Raoof M; Corr SJ; Kaluarachchi WD; Massey KL; Briggs K; Zhu C; Cheney MA; Wilson LJ; Curley SA
    Nanomedicine; 2012 Oct; 8(7):1096-105. PubMed ID: 22349096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Understanding of DNA Denaturation in Nanoscale Thermal Gradients Created by Femtosecond Excitation of Gold Nanoparticles.
    Hastman DA; Chaturvedi P; Oh E; Melinger JS; Medintz IL; Vuković L; Díaz SA
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3404-3417. PubMed ID: 34982525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.