These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 36671861)
1. A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction. Zhang Y; Li Y; Luan X; Li X; Jiang J; Fan Y; Li M; Huang C; Zhang L; Zhao Y Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671861 [TBL] [Abstract][Full Text] [Related]
2. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms. Peshin S; George D; Shiri R; Kulinsky L; Madou M Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208427 [TBL] [Abstract][Full Text] [Related]
3. The dynamics of capillary flow in an open-channel system featuring trigger valves. Tokihiro JC; Robertson IH; Gregucci D; Shin A; Michelini E; Nicholson TM; Olanrewaju A; Theberge AB; Berthier J; Berthier E bioRxiv; 2024 Nov; ():. PubMed ID: 39345588 [TBL] [Abstract][Full Text] [Related]
4. From the teapot effect to tap-triggered self-wetting: a 3D self-driving sieve for whole blood filtration. Li Y; Li X; Zhang L; Luan X; Jiang J; Zhang L; Li M; Wang J; Duan J; Zhao H; Zhao Y; Huang C Microsyst Nanoeng; 2023; 9():30. PubMed ID: 36960347 [TBL] [Abstract][Full Text] [Related]
5. New flow control systems in capillarics: off valves. Menges J; Meffan C; Dolamore F; Fee C; Dobson R; Nock V Lab Chip; 2021 Jan; 21(1):205-214. PubMed ID: 33295906 [TBL] [Abstract][Full Text] [Related]
6. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Park J; Han DH; Park JK Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024 [TBL] [Abstract][Full Text] [Related]
7. Three-Dimensional Microporous Hollow Fiber Membrane Microfluidic Device Integrated with Selective Separation and Capillary Self-Driven for Point-of-Care Testing. Wu H; Ma Z; Wei C; Jiang M; Hong X; Li Y; Chen D; Huang X Anal Chem; 2020 May; 92(9):6358-6365. PubMed ID: 32250102 [TBL] [Abstract][Full Text] [Related]
8. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Toley BJ; Wang JA; Gupta M; Buser JR; Lafleur LK; Lutz BR; Fu E; Yager P Lab Chip; 2015 Mar; 15(6):1432-44. PubMed ID: 25606810 [TBL] [Abstract][Full Text] [Related]
15. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components. Ahmed I; Sullivan K; Priye A Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047 [TBL] [Abstract][Full Text] [Related]
16. Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control. Chen X; Chen S; Zhang Y; Yang H Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32708757 [TBL] [Abstract][Full Text] [Related]
17. Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use. Willis PA; Hunt BD; White VE; Lee MC; Ikeda M; Bae S; Pelletier MJ; Grunthaner FJ Lab Chip; 2007 Nov; 7(11):1469-74. PubMed ID: 17960273 [TBL] [Abstract][Full Text] [Related]
18. [Research progress of electrically-driven force based online rapid separation and enrichment techniques]. Liu Y; Chen Y; Xiao X; Xia L; Li G Se Pu; 2020 Oct; 38(10):1197-1205. PubMed ID: 34213116 [TBL] [Abstract][Full Text] [Related]
19. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics. Hassan SU; Tariq A; Noreen Z; Donia A; Zaidi SZJ; Bokhari H; Zhang X Diagnostics (Basel); 2020 Jul; 10(8):. PubMed ID: 32708045 [TBL] [Abstract][Full Text] [Related]
20. Chamfer-Type Capillary Stop Valve and Its Microfluidic Application to Blood Typing Tests. Chang YJ; Lin YT; Liao CC SLAS Technol; 2019 Apr; 24(2):188-195. PubMed ID: 30359183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]