BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36671886)

  • 21. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application.
    Wang JF; Wu XZ; Xiao R; Dong PT; Wang CG
    PLoS One; 2014; 9(6):e97976. PubMed ID: 24886913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of organic dyes using Ag NPAs/SMP SERS substrate produced via sandpaper template-assisted lithography and liquid-liquid interface self-assembly.
    Tan Y; Zhou Z; Xu Y; Xie A; Wu S; Xue C
    Anal Bioanal Chem; 2024 Feb; 416(4):1047-1056. PubMed ID: 38095682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SERS-active nanocellulose substrate via in-situ photochemical synthesis.
    Wu J; Xi J; Chen H; Liu Y; Zhang L; Li P; Wu W
    Int J Biol Macromol; 2022 Aug; 215():368-376. PubMed ID: 35691436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assembly of long silver nanowires into highly aligned structure to achieve uniform "Hot Spots" for Surface-enhanced Raman scattering detection.
    Chen S; Li Q; Tian D; Ke P; Yang X; Wu Q; Chen J; Hu C; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121030. PubMed ID: 35189488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals.
    Wu W; Liu L; Dai Z; Liu J; Yang S; Zhou L; Xiao X; Jiang C; Roy VA
    Sci Rep; 2015 May; 5():10208. PubMed ID: 25974125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M; Tokman N; Culha M
    Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paper-Based SERS Sensing Platform Based on 3D Silver Dendrites and Molecularly Imprinted Identifier Sandwich Hybrid for Neonicotinoid Quantification.
    Zhao P; Liu H; Zhang L; Zhu P; Ge S; Yu J
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8845-8854. PubMed ID: 31989810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optoplasmonic MOFs film for SERS detection.
    Zhang X; Xie X; Zhang L; Yao K; Huang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121362. PubMed ID: 35576840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Graphene in Constructing Multilayer Plasmonic SERS Substrate with Graphene/AgNPs as Chemical Mechanism-Electromagnetic Mechanism Unit.
    Liu L; Hou S; Zhao X; Liu C; Li Z; Li C; Xu S; Wang G; Yu J; Zhang C; Man B
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis.
    Li Z; Jiang S; Huo Y; Ning T; Liu A; Zhang C; He Y; Wang M; Li C; Man B
    Nanoscale; 2018 Mar; 10(13):5897-5905. PubMed ID: 29546897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shape Effect of Surface-Enhanced Raman Scattering-Active-Substrate-Based Nanoparticles on Local Electric Field for Biochemical Sensing Application.
    Lee ET; Cheng HW; Yang JY; Li Y
    J Nanosci Nanotechnol; 2017 Feb; 17(2):871-77. PubMed ID: 29668221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy.
    Zhai WL; Li DW; Qu LL; Fossey JS; Long YT
    Nanoscale; 2012 Jan; 4(1):137-42. PubMed ID: 22064940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids.
    Ren W; Fang Y; Wang E
    ACS Nano; 2011 Aug; 5(8):6425-33. PubMed ID: 21721545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS performance and DNA molecular detection.
    Yang W; Li Z; Lu Z; Yu J; Huo Y; Man B; Pan J; Si H; Jiang S; Zhang C
    Opt Express; 2019 Feb; 27(3):3000-3013. PubMed ID: 30732328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes.
    Liu Y; Tian H; Chen X; Liu W; Xia K; Huang J; de la Chapelle ML; Huang G; Zhang Y; Fu W
    Mikrochim Acta; 2020 Feb; 187(3):160. PubMed ID: 32040773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection.
    Hao Z; Mansuer M; Guo Y; Zhu Z; Wang X
    Talanta; 2016; 146():533-9. PubMed ID: 26695301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array.
    Zhang W; Xue T; Zhang L; Lu F; Liu M; Meng C; Mao D; Mei T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of triangular Au/Ag nanoparticle arrays with sub-10 nm nanogap controlled by flexible substrate for surface-enhanced Raman scattering.
    Zhang P; Wu J; Wang S; Fang J
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36179661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.