These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 36671936)
1. The Feature, Performance, and Prospect of Advanced Electrodes for Electroencephalogram. Liu Q; Yang L; Zhang Z; Yang H; Zhang Y; Wu J Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671936 [TBL] [Abstract][Full Text] [Related]
2. Signal correlation between wet and original dry electrodes in electroencephalogram according to the contact impedance of dry electrodes. Higashi Y; Yokota Y; Naruse Y Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1062-1065. PubMed ID: 29060057 [TBL] [Abstract][Full Text] [Related]
3. Development of Low-Contact-Impedance Dry Electrodes for Electroencephalogram Signal Acquisition. Damalerio RB; Lim R; Gao Y; Zhang TT; Cheng MY Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177657 [TBL] [Abstract][Full Text] [Related]
4. Review of semi-dry electrodes for EEG recording. Li GL; Wu JT; Xia YH; He QG; Jin HG J Neural Eng; 2020 Oct; 17(5):051004. PubMed ID: 33002886 [TBL] [Abstract][Full Text] [Related]
5. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929 [TBL] [Abstract][Full Text] [Related]
6. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements. Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063 [TBL] [Abstract][Full Text] [Related]
7. Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically 'charge-discharge' electrolyte. Li G; Wang S; Li M; Duan YY J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33721854 [No Abstract] [Full Text] [Related]
8. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Zhang L; Kumar KS; He H; Cai CJ; He X; Gao H; Yue S; Li C; Seet RC; Ren H; Ouyang J Nat Commun; 2020 Sep; 11(1):4683. PubMed ID: 32943621 [TBL] [Abstract][Full Text] [Related]
9. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Mathewson KE; Harrison TJ; Kizuk SA Psychophysiology; 2017 Jan; 54(1):74-82. PubMed ID: 28000254 [TBL] [Abstract][Full Text] [Related]
10. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability. Di Flumeri G; Aricò P; Borghini G; Sciaraffa N; Di Florio A; Babiloni F Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30893791 [TBL] [Abstract][Full Text] [Related]
12. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites. Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Dry-Contact EEG Electrodes and an Empirical Comparison of Ag/AgCl and IrO Kappel SL; Kidmose P Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3127-3130. PubMed ID: 36086317 [TBL] [Abstract][Full Text] [Related]
14. Comparison of foam-based and spring-loaded dry EEG electrodes with wet electrodes in resting and moving conditions. Yeung A; Garudadri H; Van Toen C; Mercier P; Balkan O; Makeig S; Virji-Babul N Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7131-4. PubMed ID: 26737936 [TBL] [Abstract][Full Text] [Related]
15. Hairy-Skin-Adaptive Viscoelastic Dry Electrodes for Long-Term Electrophysiological Monitoring. Tian Q; Zhao H; Wang X; Jiang Y; Zhu M; Yelemulati H; Xie R; Li Q; Su R; Cao Z; Jiang N; Huang J; Li G; Chen S; Chen X; Liu Z Adv Mater; 2023 Jul; 35(30):e2211236. PubMed ID: 37072159 [TBL] [Abstract][Full Text] [Related]
16. The impact of head movements on EEG and contact impedance: an adaptive filtering solution for motion artifact reduction. Mihajlovic V; Patki S; Grundlehner B Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5064-7. PubMed ID: 25571131 [TBL] [Abstract][Full Text] [Related]
19. Investigating the impact of force and movements on impedance magnitude and EEG. Mihajlović V; Li H; Grundlehner B; Penders J; Schouten AC Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1466-9. PubMed ID: 24109975 [TBL] [Abstract][Full Text] [Related]
20. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Searle A; Kirkup L Physiol Meas; 2000 May; 21(2):271-83. PubMed ID: 10847194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]