These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36671959)

  • 1. Plier Ligands for Trapping Neurotransmitters into Complexes for Sensitive Analysis by SERS Spectroscopy.
    Eremina OE; Kapitanova OO; Medved'ko AV; Zelenetskaya AS; Egorova BV; Shekhovtsova TN; Vatsadze SZ; Veselova IA
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Immobilization and Resonant Raman Amplification by Complex-Loaded Enhancers (MIRRACLE) on copper (II)-chitosan-modified SERS-active metallic nanostructured substrates for multiplex determination of dopamine, norepinephrine, and epinephrine.
    Eremina OE; Yarenkov NR; Kapitanova OO; Zelenetskaya AS; Smirnov EA; Shekhovtsova TN; Goodilin EA; Veselova IA
    Mikrochim Acta; 2022 May; 189(5):211. PubMed ID: 35505261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.
    Moody AS; Sharma B
    ACS Chem Neurosci; 2018 Jun; 9(6):1380-1387. PubMed ID: 29601719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers.
    Yu X; He X; Yang T; Zhao L; Chen Q; Zhang S; Chen J; Xu J
    Int J Nanomedicine; 2018; 13():2337-2347. PubMed ID: 29713165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation of Ag nanoparticle based on surface acoustic wave for surface-enhanced Raman spectroscopy detection of dopamine.
    Park JO; Choi Y; Ahn HM; Lee CK; Chun H; Park YM; Kim KB
    Anal Chim Acta; 2024 Jan; 1285():342036. PubMed ID: 38057052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine.
    Jiang Z; Gao P; Yang L; Huang C; Li Y
    Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SERS characterization of dopamine and
    Badillo-Ramírez I; Saniger JM; Popp J; Cialla-May D
    Phys Chem Chem Phys; 2021 Jun; 23(21):12158-12170. PubMed ID: 34008659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).
    Guo H; Zhang Z; Xing B; Mukherjee A; Musante C; White JC; He L
    Environ Sci Technol; 2015 Apr; 49(7):4317-24. PubMed ID: 25775209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical Trapping of Neurotransmitters in Polymer-Mediated Gold Nanoparticle Aggregates for Surface-Enhanced Raman Spectroscopy.
    Vander Ende E; Bourgeois MR; Henry AI; Chávez JL; Krabacher R; Schatz GC; Van Duyne RP
    Anal Chem; 2019 Aug; 91(15):9554-9562. PubMed ID: 31283189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live Intracellular Biorthogonal Imaging by Surface Enhanced Raman Spectroscopy using Alkyne-Silver Nanoparticles Clusters.
    Ardini M; Huang JA; Sánchez CS; Mousavi MZ; Caprettini V; Maccaferri N; Melle G; Bruno G; Pasquale L; Garoli D; De Angelis F
    Sci Rep; 2018 Aug; 8(1):12652. PubMed ID: 30140073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman spectroscopy of organic molecules adsorbed on metallic nanoparticles.
    Heleg-Shabtai V; Zifman A; Kendler S
    Adv Exp Med Biol; 2012; 733():53-61. PubMed ID: 22101712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering on silver nanostructured films prepared by spray-deposition.
    Brayner R; Iglesias R; Truong S; Beji Z; Felidj N; Fiévet F; Aubard J
    Langmuir; 2010 Nov; 26(22):17465-9. PubMed ID: 20942468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A SERS Composite Hydrogel Device for Point-of-Care Analysis of Neurotransmitter in Whole Blood.
    Wu L; Liu X; Zong S; Wang Z; Cui Y
    Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37366976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman spectroscopy: substrate-related issues.
    Lin XM; Cui Y; Xu YH; Ren B; Tian ZQ
    Anal Bioanal Chem; 2009 Aug; 394(7):1729-45. PubMed ID: 19381618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate.
    Peng C; Song Y; Wei G; Zhang W; Li Z; Dong WF
    J Colloid Interface Sci; 2008 Jan; 317(1):183-90. PubMed ID: 17931640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial interactions of SERS-active noble metal nanostructures with functional ligands for diagnostic analysis of protein cancer markers.
    Ryu HJ; Lee WK; Kim YH; Lee JS
    Mikrochim Acta; 2021 Apr; 188(5):164. PubMed ID: 33844071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.