BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36671980)

  • 1. Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals.
    Wang SH; Wang JW; Zhao LT; Abbas SZ; Yang Z; Yong YC
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in soil microbial fuel cells based self-powered biosensor.
    Abbas SZ; Wang JY; Wang H; Wang JX; Wang YT; Yong YC
    Chemosphere; 2022 Sep; 303(Pt 1):135036. PubMed ID: 35609665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor.
    Yu D; Bai L; Zhai J; Wang Y; Dong S
    Talanta; 2017 Jun; 168():210-216. PubMed ID: 28391844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the presence of phosphate buffer solution on removal efficiency of Pb and Zn in soil by solid phase microbial fuel cells.
    Cao M; Yin J; Song T; Xie J
    Biotechnol Lett; 2022 Dec; 44(12):1495-1505. PubMed ID: 36269494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential flowing membrane-less microbial fuel cell using bioanode and biocathode as sensing elements for toxicity monitoring.
    Zhao T; Xie B; Yi Y; Liu H
    Bioresour Technol; 2019 Mar; 276():276-280. PubMed ID: 30640022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation effects of the microbial fuel cells on heavy metal accumulation in rice (Oryza sativa L.).
    Gustave W; Yuan ZF; Li X; Ren YX; Feng WJ; Shen H; Chen Z
    Environ Pollut; 2020 May; 260():113989. PubMed ID: 31991356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell.
    Yu B; Feng L; He Y; Yang L; Xun Y
    J Hazard Mater; 2021 Jan; 401():123394. PubMed ID: 32659585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced bioremediation of heavy metals and bioelectricity generation in a macrophyte-integrated cathode sediment microbial fuel cell (mSMFC).
    Kabutey FT; Antwi P; Ding J; Zhao QL; Quashie FK
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26829-26843. PubMed ID: 31300989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Batteryless, wireless sensor powered by a sediment microbial fuel cell.
    Donovan C; Dewan A; Heo D; Beyenal H
    Environ Sci Technol; 2008 Nov; 42(22):8591-6. PubMed ID: 19068853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of CuO/ZnO/FTO electrode properties on the performance of a photo-microbial fuel cell sensor for the detection of heavy metals.
    Lu Y; Hu X; Tang L; Peng B; Tang J; Zeng T; XunkuoZhang ; Liu Q
    Chemosphere; 2022 Sep; 302():134779. PubMed ID: 35513075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line monitoring of repeated copper pollutions using sediment microbial fuel cell based sensors in the field environment.
    Liu L; Lu Y; Zhong W; Meng L; Deng H
    Sci Total Environ; 2020 Dec; 748():141544. PubMed ID: 32798883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants.
    Yi Y; Xie B; Zhao T; Li Z; Stom D; Liu H
    Bioelectrochemistry; 2019 Feb; 125():71-78. PubMed ID: 30273855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the power performance of sediment microbial fuel cells by novel strategies: Overlying water flow and hydraulic-driven cathode rotating.
    Guo F; Shi Z; Yang K; Wu Y; Liu H
    Sci Total Environ; 2019 Aug; 678():533-542. PubMed ID: 31078843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ degradation of organic pollutants by novel solar cell equipped soil microbial fuel cell.
    Xie W; Ren G; Zhou J; Ke Z; Ren K; Zhao X; Wang Y
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30210-30220. PubMed ID: 36422776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time monitoring of sediment bulking through a multi-anode sediment microbial fuel cell as reliable biosensor.
    Wang C; Jiang H
    Sci Total Environ; 2019 Dec; 697():134009. PubMed ID: 31487595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Detection of toxic substances in microbial fuel cells].
    Wang J; Niu H; Wu W
    Sheng Wu Gong Cheng Xue Bao; 2017 May; 33(5):720-729. PubMed ID: 28876027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Ren YX; Liu JY; Zhang J; Chen Z
    Chemosphere; 2019 Dec; 237():124459. PubMed ID: 31377597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A batch-mode cube microbial fuel cell based "shock" biosensor for wastewater quality monitoring.
    Liu B; Lei Y; Li B
    Biosens Bioelectron; 2014 Dec; 62():308-14. PubMed ID: 25032682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor.
    Adekunle A; Raghavan V; Tartakovsky B
    Biosens Bioelectron; 2019 May; 132():382-390. PubMed ID: 30903911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between bioelectrochemical copper migration, reduction and electricity in a three-chamber microbial fuel cell.
    Wang H; Long X; Zhang J; Cao X; Liu S; Li X
    Chemosphere; 2020 Feb; 241():125097. PubMed ID: 31629235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.