BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 36672182)

  • 41. Area under the curve as a tool to measure kinetics of tumor growth in experimental animals.
    Duan F; Simeone S; Wu R; Grady J; Mandoiu I; Srivastava PK
    J Immunol Methods; 2012 Aug; 382(1-2):224-8. PubMed ID: 22698786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineered T cells for the adoptive therapy of B-cell chronic lymphocytic leukaemia.
    Koehler P; Schmidt P; Hombach AA; Hallek M; Abken H
    Adv Hematol; 2012; 2012():595060. PubMed ID: 21837241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2.
    Morgan RA; Yang JC; Kitano M; Dudley ME; Laurencot CM; Rosenberg SA
    Mol Ther; 2010 Apr; 18(4):843-51. PubMed ID: 20179677
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab.
    Nagorsen D; Bargou R; Ruttinger D; Kufer P; Baeuerle PA; Zugmaier G
    Leuk Lymphoma; 2009 Jun; 50(6):886-91. PubMed ID: 19455460
    [TBL] [Abstract][Full Text] [Related]  

  • 45. T cell activation by antibody-like immunoreceptors: the position of the binding epitope within the target molecule determines the efficiency of activation of redirected T cells.
    Hombach AA; Schildgen V; Heuser C; Finnern R; Gilham DE; Abken H
    J Immunol; 2007 Apr; 178(7):4650-7. PubMed ID: 17372024
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule.
    Hombach A; Wieczarkowiecz A; Marquardt T; Heuser C; Usai L; Pohl C; Seliger B; Abken H
    J Immunol; 2001 Dec; 167(11):6123-31. PubMed ID: 11714771
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved short- and long-term XTT-based colorimetric cellular cytotoxicity assay for melanoma and other tumor cells.
    Jost LM; Kirkwood JM; Whiteside TL
    J Immunol Methods; 1992 Mar; 147(2):153-65. PubMed ID: 1548398
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characteristics of a human cell line transformed by DNA from human adenovirus type 5.
    Graham FL; Smiley J; Russell WC; Nairn R
    J Gen Virol; 1977 Jul; 36(1):59-74. PubMed ID: 886304
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL).
    Tasian SK; Gardner RA
    Ther Adv Hematol; 2015 Oct; 6(5):228-41. PubMed ID: 26425336
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [CD19 antigen loss after treatment of Bispecific T-cell Engager and effective response to salvage bispecific CAR-T therapy in B cell acute lymphoblastic leukemia: a case report and literature review].
    Fu XH; Wang Y; Wang HJ; Wei SN; Xu YX; Xing HY; Tang KJ; Tian Z; Rao Q; Wang JX; Wang M
    Zhonghua Xue Ye Xue Za Zhi; 2020 Apr; 41(4):282-286. PubMed ID: 32447930
    [No Abstract]   [Full Text] [Related]  

  • 51. Anti-CD19 chimeric antigen receptor-modified T cells for B-cell malignancies: a systematic review of efficacy and safety in clinical trials.
    Zhu Y; Tan Y; Ou R; Zhong Q; Zheng L; Du Y; Zhang Q; Huang J
    Eur J Haematol; 2016 Apr; 96(4):389-96. PubMed ID: 26115358
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Treatment of lymphoblastic leukemia with CD19-specific modified chimeric antigen receptor T cells].
    Li HH; Zhu P; Wu XQ; Liu YF
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2014 Dec; 22(6):1753-6. PubMed ID: 25543510
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: Clinical data to date, current limitations and perspectives.
    Gauthier J; Yakoub-Agha I
    Curr Res Transl Med; 2017 Sep; 65(3):93-102. PubMed ID: 28988742
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chimeric Antigen Receptor T Cell Therapy for Pediatric B-ALL: Narrowing the Gap Between Early and Long-Term Outcomes.
    Schultz L
    Front Immunol; 2020; 11():1985. PubMed ID: 32849662
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chimeric Antigen Receptor T Cell Based Immunotherapy for Cancer.
    Li F; Zhang T; Cao L; Zhang Y
    Curr Stem Cell Res Ther; 2018; 13(5):327-335. PubMed ID: 29676233
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.
    Kochenderfer JN; Rosenberg SA
    Nat Rev Clin Oncol; 2013 May; 10(5):267-76. PubMed ID: 23546520
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Allogeneic chimeric antigen receptor-modified cells for adoptive cell therapy of cancer.
    Marcus A; Eshhar Z
    Expert Opin Biol Ther; 2014 Jul; 14(7):947-54. PubMed ID: 24661086
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CAR-T cells, from principle to clinical applications.
    Bourbon E; Ghesquières H; Bachy E
    Bull Cancer; 2021 Oct; 108(10S):S4-S17. PubMed ID: 34920806
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A CD19-Anti-ErbB2 scFv Engager Protein Enables CD19-Specific CAR T Cells to Eradicate ErbB2
    Hombach AA; Ambrose C; Lobb R; Rennert P; Abken H
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672182
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.