These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 36672273)

  • 1. Experimentally Created Magnetic Force in Microbiological Space and On-Earth Studies: Perspectives and Restrictions.
    Ermolaeva SA; Parfenov VA; Karalkin PA; Khesuani YD; Domnin PA
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.
    Liu M; Gao H; Shang P; Zhou X; Ashforth E; Zhuo Y; Chen D; Ren B; Liu Z; Zhang L
    PLoS One; 2011; 6(10):e24697. PubMed ID: 22039402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single Cell Densitometry and Weightlessness Culture of Mesenchymal Stem Cells Using Magnetic Levitation.
    Anil-Inevi M; Yilmaz E; Sarigil O; Tekin HC; Ozcivici E
    Methods Mol Biol; 2020; 2125():15-25. PubMed ID: 31020635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crystallization in microgravity generated by a superconducting magnet.
    Wakayama NI; Yin DC; Harata K; Kiyoshi T; Fujiwara M; Tanimoto Y
    Ann N Y Acad Sci; 2006 Sep; 1077():184-93. PubMed ID: 17124123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Microgravity Analogs to Spaceflight in Studies of Plant Growth and Development.
    Kiss JZ; Wolverton C; Wyatt SE; Hasenstein KH; van Loon JJWA
    Front Plant Sci; 2019; 10():1577. PubMed ID: 31867033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability.
    Dijkstra CE; Larkin OJ; Anthony P; Davey MR; Eaves L; Rees CE; Hill RJ
    J R Soc Interface; 2011 Mar; 8(56):334-44. PubMed ID: 20667843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Reduced Gravity Simulators for Plant Biological Studies.
    Herranz R; Valbuena MA; Manzano A; Kamal KY; Villacampa A; Ciska M; van Loon JJWA; Medina FJ
    Methods Mol Biol; 2022; 2368():241-265. PubMed ID: 34647260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and preparation of a particle dynamics space flight experiment, SHIVA.
    Trolinger JD; L'Esperance D; Rangel RH; Coimbra CF; Witherow WK
    Ann N Y Acad Sci; 2004 Nov; 1027():550-66. PubMed ID: 15644380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic levitation-based Martian and Lunar gravity simulator.
    Valles JM; Maris HJ; Seidel GM; Tang J; Yao W
    Adv Space Res; 2005; 36(1):114-8. PubMed ID: 16252445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Impact of Magnetic Force and Spaceflight Conditions on
    Domnin PA; Parfenov VA; Kononikhin AS; Petrov SV; Shevlyagina NV; Arkhipova AY; Koudan EV; Nezhurina EK; Brzhozovskiy AG; Bugrova AE; Moysenovich AM; Levin AA; Karalkin PA; Pereira FDAS; Zhukhovitsky VG; Lobakova ES; Mironov VA; Nikolaev EN; Khesuani YD; Ermolaeva SA
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of nonuniform magnetic fields on orientation of plant seedlings in microgravity conditions.
    Nechitailo GS; Mashinsky AL; Kuznetsov AA; Chikov VM; Kuznetsov OA
    Adv Space Res; 2001; 28(4):639-43. PubMed ID: 11803966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly.
    Hill RJ; Larkin OJ; Dijkstra CE; Manzano AI; de Juan E; Davey MR; Anthony P; Eaves L; Medina FJ; Marco R; Herranz R
    J R Soc Interface; 2012 Jul; 9(72):1438-49. PubMed ID: 22219396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic levitation for space exploration.
    Sarabi MR; Yetisen AK; Tasoglu S
    Trends Biotechnol; 2022 Aug; 40(8):915-917. PubMed ID: 35466007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plants in Microgravity: Molecular and Technological Perspectives.
    Baba AI; Mir MY; Riyazuddin R; Cséplő Á; Rigó G; Fehér A
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The microgravity environment for experiments on the International Space Station.
    Nelson ES; Jules K
    J Gravit Physiol; 2004 Mar; 11(1):1-10. PubMed ID: 16145793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergy between stresses: an interaction between spaceflight-associated conditions and the microgravity response.
    Beckingham KM
    Mol Ecol; 2010 Oct; 19(19):4105-7. PubMed ID: 25241407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the effects of magnetic levitation to simulate microgravity environment on the Arp2/3 complex pathway in macrophage.
    Wang S; Zhang N; Di J; Zhao W; Shi G; Xie R; Hu B; Yang H
    J Biol Phys; 2021 Sep; 47(3):323-335. PubMed ID: 34533653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What can biofabrication do for space and what can space do for biofabrication?
    Moroni L; Tabury K; Stenuit H; Grimm D; Baatout S; Mironov V
    Trends Biotechnol; 2022 Apr; 40(4):398-411. PubMed ID: 34544616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adverse effects of microgravity on the magnetotactic bacterium Magnetospirillum magnetotacticum.
    Urban JE
    Acta Astronaut; 2000 Nov; 47(10):775-80. PubMed ID: 11543576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria.
    Higginson EE; Galen JE; Levine MM; Tennant SM
    Pathog Dis; 2016 Nov; 74(8):. PubMed ID: 27630185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.