These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36672699)

  • 1. Identification of Geometrical Features of Cell Surface Responsible for Cancer Aggressiveness: Machine Learning Analysis of Atomic Force Microscopy Images of Human Colorectal Epithelial Cells.
    Petrov M; Sokolov I
    Biomedicines; 2023 Jan; 11(1):. PubMed ID: 36672699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-aided atomic structure identification of interfacial ionic hydrates from AFM images.
    Tang B; Song Y; Qin M; Tian Y; Wu ZW; Jiang Y; Cao D; Xu L
    Natl Sci Rev; 2023 Jul; 10(7):nwac282. PubMed ID: 37266561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale compositional mapping of cells, tissues, and polymers with ringing mode of atomic force microscopy.
    Dokukin ME; Sokolov I
    Sci Rep; 2017 Sep; 7(1):11828. PubMed ID: 28928471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive diagnostic imaging using machine-learning analysis of nanoresolution images of cell surfaces: Detection of bladder cancer.
    Sokolov I; Dokukin ME; Kalaparthi V; Miljkovic M; Wang A; Seigne JD; Grivas P; Demidenko E
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):12920-12925. PubMed ID: 30509988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy-based assessment of multimechanical cellular properties for classification of graded bladder cancer cells and cancer early diagnosis using machine learning analysis.
    Zhu X; Qin R; Qu K; Wang Z; Zhao X; Xu W
    Acta Biomater; 2023 Mar; 158():358-373. PubMed ID: 36581006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of Soft and Biological Samples Using AFM Ringing Mode.
    Sokolov I; Dokukin ME
    Methods Mol Biol; 2018; 1814():469-482. PubMed ID: 29956250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Identification from AFM Images Using the IUPAC Nomenclature and Attribute Multimodal Recurrent Neural Networks.
    Carracedo-Cosme J; Romero-Muñiz C; Pou P; Pérez R
    ACS Appl Mater Interfaces; 2023 May; 15(18):22692-22704. PubMed ID: 37126486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy.
    Jung SH; Park JY; Yoo JO; Shin I; Kim YM; Ha KS
    Ultramicroscopy; 2009 Nov; 109(12):1428-34. PubMed ID: 19665305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Learning Approach for Molecular Classification Based on AFM Images.
    Carracedo-Cosme J; Romero-Muñiz C; Pérez R
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34202532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. nanite: using machine learning to assess the quality of atomic force microscopy-enabled nano-indentation data.
    Müller P; Abuhattum S; Möllmert S; Ulbricht E; Taubenberger AV; Guck J
    BMC Bioinformatics; 2019 Sep; 20(1):465. PubMed ID: 31500563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlative fluorescence and atomic force microscopy to advance the bio-physical characterisation of co-culture of living cells.
    Moura CC; Miranda A; Oreffo ROC; De Beule PAA
    Biochem Biophys Res Commun; 2020 Aug; 529(2):392-397. PubMed ID: 32703441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating live and fixed epithelial and fibroblast cells by atomic force microscopy.
    Sinniah K; Paauw J; Ubels J
    Curr Eye Res; 2002 Jul; 25(1):61-8. PubMed ID: 12518245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated image analysis of atomic force microscopy images of rotavirus particles.
    Venkataraman S; Allison DP; Qi H; Morrell-Falvey JL; Kallewaard NL; Crowe JE; Doktycz MJ
    Ultramicroscopy; 2006; 106(8-9):829-37. PubMed ID: 16730407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma.
    Wang H; Song B; Ye N; Ren J; Sun X; Dai Z; Zhang Y; Chen BT
    Eur J Radiol; 2020 Jan; 122():108755. PubMed ID: 31783344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation atomic force microscopy for atomic reconstruction of biomolecular structures from resolution-limited experimental images.
    Amyot R; Marchesi A; Franz CM; Casuso I; Flechsig H
    PLoS Comput Biol; 2022 Mar; 18(3):e1009970. PubMed ID: 35294442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QUAM-AFM: A Free Database for Molecular Identification by Atomic Force Microscopy.
    Carracedo-Cosme J; Romero-Muñiz C; Pou P; Pérez R
    J Chem Inf Model; 2022 Mar; 62(5):1214-1223. PubMed ID: 35234034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating live and fixed epithelial and fibroblast cells by atomic force microscopy.
    Sinniah K; Paauw J; Ubels J
    Curr Eye Res; 2002 Mar; 24(3):188-95. PubMed ID: 12221526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.