BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36672748)

  • 1. Co-Expression of
    Liu S; Liu X; Zhang X; Chang S; Ma C; Qin F
    Genes (Basel); 2022 Dec; 14(1):. PubMed ID: 36672748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings.
    Wang X; Wang H; Liu S; Ferjani A; Li J; Yan J; Yang X; Qin F
    Nat Genet; 2016 Oct; 48(10):1233-41. PubMed ID: 27526320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription Factor ZmNAC20 Improves Drought Resistance by Promoting Stomatal Closure and Activating Expression of Stress-Responsive Genes in Maize.
    Liu H; Song S; Liu M; Mu Y; Li Y; Xuan Y; Niu L; Zhang H; Wang W
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings.
    Zhang X; Lei L; Lai J; Zhao H; Song W
    BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants.
    Wei A; He C; Li B; Li N; Zhang J
    Plant Biotechnol J; 2011 Feb; 9(2):216-29. PubMed ID: 20633239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings.
    Mao H; Wang H; Liu S; Li Z; Yang X; Yan J; Li J; Tran LS; Qin F
    Nat Commun; 2015 Sep; 6():8326. PubMed ID: 26387805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous expression of the TsVP gene improves the drought resistance of maize.
    Li B; Wei A; Song C; Li N; Zhang J
    Plant Biotechnol J; 2008 Feb; 6(2):146-59. PubMed ID: 17999658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings.
    Xiang Y; Sun X; Gao S; Qin F; Dai M
    Mol Plant; 2017 Mar; 10(3):456-469. PubMed ID: 27746300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic Expression of a Heterologous Glutaredoxin Enhances Drought Tolerance and Grain Yield in Field Grown Maize.
    Tamang TM; Sprague SA; Kakeshpour T; Liu S; White FF; Park S
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abscisic acid collaborates with lignin and flavonoid to improve pre-silking drought tolerance by tuning stem elongation and ear development in maize (Zea mays L.).
    Gao J; Zhang Y; Xu C; Wang X; Wang P; Huang S
    Plant J; 2023 Apr; 114(2):437-454. PubMed ID: 36786687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of a late embryogenesis abundant protein ZmNHL1 in maize under drought stress.
    Wang G; Su H; Abou-Elwafa SF; Zhang P; Cao L; Fu J; Xie X; Ku L; Wen P; Wang T; Wei L
    J Plant Physiol; 2023 Jan; 280():153883. PubMed ID: 36470036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice.
    Rahman H; Ramanathan V; Nallathambi J; Duraialagaraja S; Muthurajan R
    BMC Biotechnol; 2016 May; 16 Suppl 1(Suppl 1):35. PubMed ID: 27213684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize.
    Wang CR; Yang AF; Yue GD; Gao Q; Yin HY; Zhang JR
    Planta; 2008 Apr; 227(5):1127-40. PubMed ID: 18214529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis.
    Zhang P; Fan Y; Sun X; Chen L; Terzaghi W; Bucher E; Li L; Dai M
    Plant J; 2019 May; 98(4):697-713. PubMed ID: 30715761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide association study presents insights into the genetic architecture of drought tolerance in maize seedlings under field water-deficit conditions.
    Chen S; Dang D; Liu Y; Ji S; Zheng H; Zhao C; Dong X; Li C; Guan Y; Zhang A; Ruan Y
    Front Plant Sci; 2023; 14():1165582. PubMed ID: 37223800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings.
    Jiang Z; Jin F; Shan X; Li Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physio-morphological traits and osmoregulation strategies of hybrid maize (Zea mays) at the seedling stage in response to water-deficit stress.
    Pipatsitee P; Theerawitaya C; Tiasarum R; Samphumphuang T; Singh HP; Datta A; Cha-Um S
    Protoplasma; 2022 Jul; 259(4):869-883. PubMed ID: 34581924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco.
    Sun K; Wang H; Xia Z
    Plant Sci; 2019 Mar; 280():97-109. PubMed ID: 30824033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and proteomic analysis of maize seedling response to water deficiency stress.
    Xin L; Zheng H; Yang Z; Guo J; Liu T; Sun L; Xiao Y; Yang J; Yang Q; Guo L
    J Plant Physiol; 2018 Sep; 228():29-38. PubMed ID: 29852332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.