These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36673119)

  • 21. In Silico Investigation of SNR and Dermis Sensitivity for Optimum Dual-Channel Near-Infrared Glucose Sensor Designs for Different Skin Colors.
    Althobaiti M
    Biosensors (Basel); 2022 Sep; 12(10):. PubMed ID: 36290941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transmission versus reflectance spectroscopy for quantitation.
    Gardner CM
    J Biomed Opt; 2018 Jan; 23(1):1-8. PubMed ID: 29297210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of a fat on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation.
    Lin L; Niwayama M; Shiga T; Kudo N; Takahashi M; Yamamoto K
    Front Med Biol Eng; 2000; 10(1):43-58. PubMed ID: 10898475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Study on the best detector-distance of noninvasive biochemical examination by Monte Carlo simulation].
    Dong YF; Lu QP; Ding HQ; Gao HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Apr; 34(4):942-6. PubMed ID: 25007605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of extracerebral layers on estimates of optical properties with continuous wave near infrared spectroscopy: analysis based on multi-layered brain tissue architecture and Monte Carlo simulation.
    Zhang Y; Liu X; Wang Q; Liu D; Yang C; Sun J
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):144-150. PubMed ID: 30676092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of optical pathlength through tissue from direct time of flight measurement.
    Delpy DT; Cope M; van der Zee P; Arridge S; Wray S; Wyatt J
    Phys Med Biol; 1988 Dec; 33(12):1433-42. PubMed ID: 3237772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium.
    Piao D; Barbour RL; Graber HL; Lee DC
    J Biomed Opt; 2015 Oct; 20(10):105005. PubMed ID: 26465613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of ultrasound modulation of near infrared light on the quantification of scattering coefficient.
    Singh MS; Yalavarthy PK; Vasu RM; Rajan K
    Med Phys; 2010 Jul; 37(7):3744-51. PubMed ID: 20831082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential pathlength factor for diffuse photon scattering through tissue by a pulse-response method.
    Ultman JS; Piantadosi CA
    Math Biosci; 1991 Nov; 107(1):73-82. PubMed ID: 1806109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Different Optical Properties of Head Tissues on Near-Infrared Spectroscopy Using Monte Carlo Simulations.
    Russomanno E; Kalyanov A; Jiang J; Ackermann M; Wolf M
    Adv Exp Med Biol; 2022; 1395():39-43. PubMed ID: 36527611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemoglobin plus myoglobin concentrations and near infrared light pathlength in phantom and pig hearts determined by diffuse reflectance spectroscopy.
    Gussakovsky E; Jilkina O; Yang Y; Kupriyanov V
    Anal Biochem; 2008 Nov; 382(2):107-15. PubMed ID: 18713616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of the point spread function for light in tissue by a Monte Carlo method.
    Van der Zee P; Delpy DT
    Adv Exp Med Biol; 1987; 215():179-91. PubMed ID: 3673719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations.
    Uludag K; Kohl M; Steinbrink J; Obrig H; Villringer A
    J Biomed Opt; 2002 Jan; 7(1):51-9. PubMed ID: 11818012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study.
    Zhang Q; Brown EN; Strangman GE
    J Biomed Opt; 2007; 12(4):044014. PubMed ID: 17867818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations.
    Tseng SH; Hayakawa C; Spanier J; Durkin AJ
    J Biomed Opt; 2009; 14(5):054043. PubMed ID: 19895144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near infrared spectroscopy for body fat sensing in neonates: quantitative analysis by GAMOS simulations.
    Mustafa FH; Jones PW; McEwan AL
    Biomed Eng Online; 2017 Jan; 16(1):14. PubMed ID: 28086963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monte Carlo study of pathlength distribution of polarized light in turbid media.
    Guo X; Wood MF; Vitkin A
    Opt Express; 2007 Feb; 15(3):1348-60. PubMed ID: 19532365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SU-D-218-06: Acceleration of Optical Photon Monte Carlo Simulations Using the Macro Monte Carlo Method.
    Jacqmin D
    Med Phys; 2012 Jun; 39(6Part3):3623. PubMed ID: 28517426
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.