These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 36673689)
21. Heavy metal concentrations of soils near the large opencast coal mine pits in China. Liu X; Shi H; Bai Z; Zhou W; Liu K; Wang M; He Y Chemosphere; 2020 Apr; 244():125360. PubMed ID: 31816549 [TBL] [Abstract][Full Text] [Related]
22. Preparation and optimization of the environmental dust suppressant with agricultural waste straw. Liang W; Zhang Z; Chi H; Ren S Environ Sci Pollut Res Int; 2022 Feb; 29(7):10198-10209. PubMed ID: 34519002 [TBL] [Abstract][Full Text] [Related]
23. Study on the physicochemical characteristics and dust suppression performance of new type chemical dust suppressant for copper mine pavement. Huang Z; Huang Y; Yang Z; Zhang J; Zhang Y; Gao Y; Shao Z; Zhang L Environ Sci Pollut Res Int; 2021 Nov; 28(42):59640-59651. PubMed ID: 34143387 [TBL] [Abstract][Full Text] [Related]
24. Dust distribution in open-pit mines based on monitoring data and fluent simulation. Wanjun T; Qingxiang C Environ Monit Assess; 2018 Oct; 190(11):632. PubMed ID: 30284664 [TBL] [Abstract][Full Text] [Related]
25. Metal content in street dust as a reflection of atmospheric dust emissions from coal power plants, metal smelters, and traffic. Žibret G; Van Tonder D; Žibret L Environ Sci Pollut Res Int; 2013 Jul; 20(7):4455-68. PubMed ID: 23247531 [TBL] [Abstract][Full Text] [Related]
26. Numerical simulation study on atomization rule and dust removal effect of surface-active dust suppressants. Xu C; Nie W; Peng H; Zhang S Environ Sci Pollut Res Int; 2023 May; 30(25):66730-66744. PubMed ID: 37186188 [TBL] [Abstract][Full Text] [Related]
27. Effect of spraying on coal dust diffusion in a coal mine based on a numerical simulation. Ma Q; Nie W; Yang S; Xu C; Peng H; Liu Z; Guo C; Cai X Environ Pollut; 2020 Sep; 264():114717. PubMed ID: 32417573 [TBL] [Abstract][Full Text] [Related]
28. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm. Li L; Zhang R; Sun J; He Q; Kong L; Liu X J Environ Health Sci Eng; 2021 Jun; 19(1):401-414. PubMed ID: 34150244 [TBL] [Abstract][Full Text] [Related]
29. Preparation and evaluation of humic acid-based composite dust suppressant for coal storage and transportation. Yu X; Hu X; Cheng W; Zhao Y; Shao Z; Xue D; Wu M Environ Sci Pollut Res Int; 2022 Mar; 29(12):17072-17086. PubMed ID: 34655031 [TBL] [Abstract][Full Text] [Related]
30. Life cycle assessment of opencast coal mine production: a case study in Yimin mining area in China. Zhang L; Wang J; Feng Y Environ Sci Pollut Res Int; 2018 Mar; 25(9):8475-8486. PubMed ID: 29307072 [TBL] [Abstract][Full Text] [Related]
31. Study on coal dust diffusion law and new pneumatic spiral spray dedusting technology at transfer point of mine cross roadway. Jing D; Liu H; Zhang T; Ge S; Ren S; Ma M PLoS One; 2022; 17(8):e0272304. PubMed ID: 35994466 [TBL] [Abstract][Full Text] [Related]
32. An Improved Machine Learning Approach for Optimizing Dust Concentration Estimation in Open-Pit Mines. Luan B; Zhou W; Jiskani IM; Wang Z Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36674111 [TBL] [Abstract][Full Text] [Related]
33. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City]. Liu S; Wu QY; Cao XJ; Wang JN; Zhang LL; Cai DQ; Zhou LY; Liu N Huan Jing Ke Xue; 2016 Jan; 37(1):270-9. PubMed ID: 27078967 [TBL] [Abstract][Full Text] [Related]
34. Synthesis and Performance of a Novel High-Efficiency Coal Dust Suppressant Based on Self-Healing Gel. Ding J; Zhou G; Liu D; Jiang W; Wei Z; Dong X Environ Sci Technol; 2020 Jul; 54(13):7992-8000. PubMed ID: 32459481 [TBL] [Abstract][Full Text] [Related]
35. Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India. Mondal S; Singh G Environ Geochem Health; 2021 May; 43(5):2081-2103. PubMed ID: 33389370 [TBL] [Abstract][Full Text] [Related]
36. Synthesis and performance characterization of an efficient coal dust suppressant for synergistic combustion with coal dust. Fan T; Liu Z; Ouyang J; Li M J Environ Manage; 2020 Sep; 269():110854. PubMed ID: 32561025 [TBL] [Abstract][Full Text] [Related]
37. Research on environmental dust pollution: ventilation and dust space-time evolution law of a fully mechanized mining face with 7-m mining height. Chen D; Nie W; Xiu Z; Yang B; Du T; Liu Q; Peng H Environ Sci Pollut Res Int; 2022 May; 29(22):33627-33644. PubMed ID: 35028832 [TBL] [Abstract][Full Text] [Related]
38. A green, environment-friendly, high-consolidation-strength composite dust suppressant derived from xanthan gum. Li M; Zhao Y; Bian S; Qiao J; Hu X; Yu S Environ Sci Pollut Res Int; 2022 Jan; 29(5):7489-7502. PubMed ID: 34476699 [TBL] [Abstract][Full Text] [Related]
39. Preparation and properties of modified starch-based low viscosity and high consolidation foam dust suppressant. Xu R; Yu H; Dong H; Ye Y; Xie S J Hazard Mater; 2023 Jun; 452():131238. PubMed ID: 36958167 [TBL] [Abstract][Full Text] [Related]
40. The spatial distribution and accumulation characteristics of heavy metals in steppe soils around three mining areas in Xilinhot in Inner Mongolia, China. Gao Y; Liu H; Liu G Environ Sci Pollut Res Int; 2017 Nov; 24(32):25416-25430. PubMed ID: 28932981 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]