These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36673988)

  • 1. Filling the Gap between Research and Market: Portable Architecture for an Intelligent Autonomous Wheelchair.
    García JC; Marrón-Romera M; Melino A; Losada-Gutiérrez C; Rodríguez JM; Fazakas A
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36673988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and validation of an intelligent wheelchair towards a clinically-functional outcome.
    Boucher P; Atrash A; Kelouwani S; Honoré W; Nguyen H; Villemure J; Routhier F; Cohen P; Demers L; Forget R; Pineau J
    J Neuroeng Rehabil; 2013 Jun; 10(1):58. PubMed ID: 23773851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IntellWheels: modular development platform for intelligent wheelchairs.
    Braga RA; Petry M; Reis LP; Moreira AP
    J Rehabil Res Dev; 2011; 48(9):1061-76. PubMed ID: 22234711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geospatial assistive technologies: potential usability criteria identified from manual wheelchair users.
    Prémont MÉ; Vincent C; Mostafavi MA
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):844-855. PubMed ID: 31226889
    [No Abstract]   [Full Text] [Related]  

  • 7. Geospatial assistive technologies for wheelchair users: a scoping review of usability measures and criteria for mobile user interfaces and their potential applicability.
    Prémont MÉ; Vincent C; Mostafavi MA; Routhier F
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):119-131. PubMed ID: 30663444
    [No Abstract]   [Full Text] [Related]  

  • 8. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A navigation system for increasing the autonomy and the security of powered wheelchairs.
    Fioretti S; Leo T; Longhi S
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):490-8. PubMed ID: 11204040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skills based evaluation of alternative input methods to command a semi-autonomous electric wheelchair.
    Rojas M; Ponce P; Molina A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4593-4596. PubMed ID: 28269298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multimodal A* Algorithm to Solve the Two-Dimensional Optimization Problem of Accompanying a Person for an Intelligent Wheelchair.
    Kalenberg M; Lieret M; Hofmann C; Franke J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38082850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Cost Magnetic Field Control for Disabled People.
    Acosta D; Fariña B; Toledo J; Sanchez LA
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and development of mobility equipment for persons with disabilities in low-resource and tropical settings: bamboo wheelchairs.
    Scheffers MF; Ona Ayala KE; Ottesen TD; Tuakli-Wosornu YA
    Disabil Rehabil Assist Technol; 2021 May; 16(4):377-383. PubMed ID: 31795784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S; Yu T; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):128-39. PubMed ID: 26054072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, analysis and performance evaluation of a hand gesture platform for navigation.
    Megalingam RK; Rangan V; Veliyara P; Krishna RR; Prabhu R; Katoch R; Koppaka GSA; Sankaran R
    Technol Health Care; 2019; 27(4):417-430. PubMed ID: 30909255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of distinct input methods of an intelligent wheelchair in simulated and real environments: a performance and usability study.
    Faria BM; Vasconcelos S; Reis LP; Lau N
    Assist Technol; 2013; 25(2):88-98. PubMed ID: 23923691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Hephaestus Smart Wheelchair System.
    Simpson RC; Poirot D; Baxter F
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):118-22. PubMed ID: 12236449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic dog for navigation of a rehabilitation wheelchair robot in a highly constrained environment.
    Sharma B
    PLoS One; 2024; 19(9):e0310024. PubMed ID: 39302949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.