These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36674109)

  • 1. Preparation and Electrochemical Performance of Bio-Oil-Derived Hydrochar as a Supercapacitor Electrode Material.
    Wei J; Sun J; Xu D; Shi L; Wang M; Li B; Song X; Zhang S; Zhang H
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36674109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen- and oxygen-doped carbon with abundant micropores derived from biomass waste for all-solid-state flexible supercapacitors.
    Lu S; Yang W; Zhou M; Qiu L; Tao B; Zhao Q; Wang X; Zhang L; Xie Q; Ruan Y
    J Colloid Interface Sci; 2022 Mar; 610():1088-1099. PubMed ID: 34876262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural bio-waste-derived 3D N/O self-doped heteroatom honeycomb-like porous carbon with tuned huge surface area for high-performance supercapacitor.
    Prabu S; Chiang KY
    Chemosphere; 2024 Aug; 361():142400. PubMed ID: 38789052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Carbon Spheres Derived from Hemicelluloses for Supercapacitor Application.
    Wang Y; Lu C; Cao X; Wang Q; Yang G; Chen J
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous Carbon Material Derived from Steam-Exploded Poplar for Supercapacitor: Insights into Synergistic Effect of KOH and Urea on the Structure and Electrochemical Properties.
    Ding D; Ma L; Li X; Liu Z; Hui L; Zhang F; Zhao Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming Waste into Wealth: Advanced Carbon-Based Electrodes Derived from Refinery and Coal By-Products for Next-Generation Energy Storage.
    Ferdous AR; Shah SS; Shah SNA; Johan BA; Al Bari MA; Aziz MA
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Fe
    Wang D; Zhou Q; Fu H; Lian Y; Zhang H
    J Colloid Interface Sci; 2023 May; 638():695-708. PubMed ID: 36780850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activated Carbon Derived from Waste Oil Shale Semi-Coke for Supercapacitor Application.
    Xiong C; Wang N; Feng M
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors.
    Zhou J; Bao L; Wu S; Yang W; Wang H
    Carbohydr Polym; 2017 Oct; 173():321-329. PubMed ID: 28732872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance electrode materials of heteroatom-doped lignin-based carbon materials for supercapacitor applications.
    Zhang C; Chen N; Zhao M; Zhong W; Wu WJ; Jin YC
    Int J Biol Macromol; 2024 Jul; 273(Pt 1):133017. PubMed ID: 38876242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Capacitive Performance of N-Doped Activated Carbon from Petroleum Coke by Combining Ammoxidation with KOH Activation.
    Zhang Y; Zhang Y; Huang J; Du D; Xing W; Yan Z
    Nanoscale Res Lett; 2016 Dec; 11(1):245. PubMed ID: 27167734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal Carbonization of Cellulose with Ammonium Sulfate and Thiourea for the Production of Supercapacitor Carbon.
    Liu C; Wang K; Du Y; Shan Y; Duan P; Ramzan N
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea.
    Yaglikci S; Gokce Y; Yagmur E; Aktas Z
    Environ Technol; 2020 Jan; 41(1):36-48. PubMed ID: 30681935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N/O co-doped porous interconnected carbon nanosheets from the co-hydrothermal treatment of soybean stalk and nickel nitrate for high-performance supercapacitors.
    Xu RX; Zhao YP; Liu GH; Zhu JS; Wang RY; Cao JP; Wei XY
    J Colloid Interface Sci; 2020 Jan; 558():211-219. PubMed ID: 31586740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co/P co-doped bamboo-based woodceramics with a sandwich structure modified by carbon nanotube electrodeposition as supercapacitor electrodes.
    Gong L; Zeng R; Shi Y; Yu M; Yu X; Sun D
    Bioresour Technol; 2024 May; 399():130573. PubMed ID: 38479626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid-modified biomass-based N-doped O-rich hierarchical porous carbon as a high-performance electrode for supercapacitors.
    Fu Y; Yuan Y; Shen Q; Xu H; Ye Z; Guo L; Wu X; Zhao Y
    Phys Chem Chem Phys; 2024 Jul; 26(30):20365-20375. PubMed ID: 39015944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable energy storage:
    Hegde SS; Bhat BR
    RSC Adv; 2024 Mar; 14(12):8028-8038. PubMed ID: 38454946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen and Sulfur Co-Doped Graphene-Like Carbon from Industrial Dye Wastewater for Use as a High-Performance Supercapacitor Electrode.
    Lin Y; Chen H; Shi Y; Wang G; Chen L; Wang F; Li S; Yu F; Zhang L
    Glob Chall; 2019 Nov; 3(11):1900043. PubMed ID: 31692940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoporous Carbon Derived from Green Material by an Ordered Activation Method and Its High Capacitance for Energy Storage.
    Lu Q; Zhou S; Zhang Y; Chen M; Li B; Wei H; Zhang D; Zhang J; Liu Q
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32486219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green and sustainable zero-waste conversion of water hyacinth (
    Saning A; Herou S; Dechtrirat D; Ieosakulrat C; Pakawatpanurut P; Kaowphong S; Thanachayanont C; Titirici MM; Chuenchom L
    RSC Adv; 2019 Aug; 9(42):24248-24258. PubMed ID: 35527901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.