These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 36674532)

  • 1. Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications.
    Qasim M; Clarkson AN; Hinkley SFR
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green synthesis of carbon quantum dots and their environmental applications.
    Manikandan V; Lee NY
    Environ Res; 2022 Sep; 212(Pt B):113283. PubMed ID: 35461844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Carbon Quantum Dots with Special Reference to Biomass as a Source - A Review.
    Thangaraj B; Solomon PR; Ranganathan S
    Curr Pharm Des; 2019; 25(13):1455-1476. PubMed ID: 31258064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of biomass-derived carbon dots as highly sensitive and selective templates for the sensing of hazardous ions.
    Singh P; Arpita ; Kumar S; Kumar P; Kataria N; Bhankar V; Kumar K; Kumar R; Hsieh CT; Khoo KS
    Nanoscale; 2023 Oct; 15(40):16241-16267. PubMed ID: 37439261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs).
    Gulati S; Baul A; Amar A; Wadhwa R; Kumar S; Varma RS
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass derived functional carbon materials for supercapacitor applications.
    Rawat S; Mishra RK; Bhaskar T
    Chemosphere; 2022 Jan; 286(Pt 3):131961. PubMed ID: 34426294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candle soot derived carbon nanoparticles: An assessment of cellular and progressive toxicity using Drosophila melanogaster model.
    Pandey H; Saini S; Singh SP; Gautam NK; Singh S
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 Feb; 228():108646. PubMed ID: 31654826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass-derived carbon nanomaterials for sensor applications.
    Malode SJ; Shanbhag MM; Kumari R; Dkhar DS; Chandra P; Shetti NP
    J Pharm Biomed Anal; 2023 Jan; 222():115102. PubMed ID: 36283325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics.
    Malavika JP; Shobana C; Sundarraj S; Ganeshbabu M; Kumar P; Selvan RK
    Biomater Adv; 2022 May; 136():212756. PubMed ID: 35929302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.
    Zhang Y; Petibone D; Xu Y; Mahmood M; Karmakar A; Casciano D; Ali S; Biris AS
    Drug Metab Rev; 2014 May; 46(2):232-46. PubMed ID: 24506522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, properties and potential applications of photoluminescent carbon nanoparticles: A review.
    Kumara BN; Kalimuthu P; Prasad KS
    Anal Chim Acta; 2023 Aug; 1268():341430. PubMed ID: 37268342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dot synthesis from waste biomass and its applications in energy and bioremediation.
    Ahuja V; Bhatt AK; Varjani S; Choi KY; Kim SH; Yang YH; Bhatia SK
    Chemosphere; 2022 Apr; 293():133564. PubMed ID: 35007612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon Nanomaterials and DNA: from Molecular Recognition to Applications.
    Sun H; Ren J; Qu X
    Acc Chem Res; 2016 Mar; 49(3):461-70. PubMed ID: 26907723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review.
    Iravani S; Varma RS
    Environ Chem Lett; 2020; 18(3):703-727. PubMed ID: 32206050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Functionalized Carbon Dots toward the Design of Efficient Materials for Sensing and Catalysis Applications.
    Dhenadhayalan N; Lin KC; Saleh TA
    Small; 2020 Jan; 16(1):e1905767. PubMed ID: 31769599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review.
    Wang Y; Xia Y
    Mikrochim Acta; 2019 Jan; 186(1):50. PubMed ID: 30612201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the modification of carbon-based quantum dots for biomedical applications.
    Alaghmandfard A; Sedighi O; Tabatabaei Rezaei N; Abedini AA; Malek Khachatourian A; Toprak MS; Seifalian A
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111756. PubMed ID: 33545897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-Based Sorbents for Hydrogen Storage: Challenges and Sustainability at Operating Conditions for Renewable Energy.
    Rimza T; Saha S; Dhand C; Dwivedi N; Patel SS; Singh S; Kumar P
    ChemSusChem; 2022 Jun; 15(11):e202200281. PubMed ID: 35377969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass-Based Carbon Dots: Current Development and Future Perspectives.
    Wareing TC; Gentile P; Phan AN
    ACS Nano; 2021 Oct; 15(10):15471-15501. PubMed ID: 34559522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper stress alleviation in corn (Zea mays L.): Comparative efficiency of carbon nanotubes and carbon nanoparticles.
    Xin X; Zhao F; Judy JD; He Z
    NanoImpact; 2022 Jan; 25():100381. PubMed ID: 35559887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.