These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 36674658)
1. PETrans: De Novo Drug Design with Protein-Specific Encoding Based on Transfer Learning. Wang X; Gao C; Han P; Li X; Chen W; Rodríguez Patón A; Wang S; Zheng P Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674658 [TBL] [Abstract][Full Text] [Related]
2. DNMG: Deep molecular generative model by fusion of 3D information for de novo drug design. Song T; Ren Y; Wang S; Han P; Wang L; Li X; Rodriguez-Patón A Methods; 2023 Mar; 211():10-22. PubMed ID: 36764588 [TBL] [Abstract][Full Text] [Related]
4. MTMol-GPT: De novo multi-target molecular generation with transformer-based generative adversarial imitation learning. Ai C; Yang H; Liu X; Dong R; Ding Y; Guo F PLoS Comput Biol; 2024 Jun; 20(6):e1012229. PubMed ID: 38924082 [TBL] [Abstract][Full Text] [Related]
5. Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design. Haroon S; C A H; A S J Comput Biol Chem; 2023 Oct; 106():107911. PubMed ID: 37450999 [TBL] [Abstract][Full Text] [Related]
9. cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation. Wang Y; Zhao H; Sciabola S; Wang W Molecules; 2023 May; 28(11):. PubMed ID: 37298906 [TBL] [Abstract][Full Text] [Related]
10. Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models. Xie W; Wang F; Li Y; Lai L; Pei J J Chem Inf Model; 2022 May; 62(10):2269-2279. PubMed ID: 35544331 [TBL] [Abstract][Full Text] [Related]
11. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation. Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462 [TBL] [Abstract][Full Text] [Related]
12. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design. Wang M; Hsieh CY; Wang J; Wang D; Weng G; Shen C; Yao X; Bing Z; Li H; Cao D; Hou T J Med Chem; 2022 Jul; 65(13):9478-9492. PubMed ID: 35713420 [TBL] [Abstract][Full Text] [Related]
13. Molecular substructure tree generative model for de novo drug design. Wang S; Song T; Zhang S; Jiang M; Wei Z; Li Z Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039853 [TBL] [Abstract][Full Text] [Related]
14. De novo generation of dual-target ligands using adversarial training and reinforcement learning. Lu F; Li M; Min X; Li C; Zeng X Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338 [TBL] [Abstract][Full Text] [Related]
15. Applications of Deep Learning in Molecule Generation and Molecular Property Prediction. Walters WP; Barzilay R Acc Chem Res; 2021 Jan; 54(2):263-270. PubMed ID: 33370107 [TBL] [Abstract][Full Text] [Related]
16. Generative machine learning for de novo drug discovery: A systematic review. Martinelli DD Comput Biol Med; 2022 Jun; 145():105403. PubMed ID: 35339849 [TBL] [Abstract][Full Text] [Related]
17. De novo drug design as GPT language modeling: large chemistry models with supervised and reinforcement learning. Ye G J Comput Aided Mol Des; 2024 Apr; 38(1):20. PubMed ID: 38647700 [TBL] [Abstract][Full Text] [Related]
19. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study. Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583 [TBL] [Abstract][Full Text] [Related]