These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36674701)
1. Integrating BSA-Seq with RNA-Seq Reveals a Novel Fasciated Ear5 Mutant in Maize. Yan P; Li W; Zhou E; Xing Y; Li B; Liu J; Zhang Z; Ding D; Fu Z; Xie H; Tang J Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674701 [TBL] [Abstract][Full Text] [Related]
2. BSA-Seq and Transcriptomic Analysis Provide Candidate Genes Associated with Inflorescence Architecture and Kernel Orientation by Phytohormone Homeostasis in Maize. Wang Y; Li Y; Zhang W; Yang Y; Ma Y; Li X; Meng D; Luo H; Xue W; Lv X; Li F; Du W; Geng X Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445901 [TBL] [Abstract][Full Text] [Related]
3. Combined BSA-Seq Based Mapping and RNA-Seq Profiling Reveal Candidate Genes Associated with Plant Architecture in Ye S; Yan L; Ma X; Chen Y; Wu L; Ma T; Zhao L; Yi B; Ma C; Tu J; Shen J; Fu T; Wen J Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269615 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome dynamic landscape underlying the improvement of maize lodging resistance under coronatine treatment. Ren Z; Wang X; Tao Q; Guo Q; Zhou Y; Yi F; Huang G; Li Y; Zhang M; Li Z; Duan L BMC Plant Biol; 2021 Apr; 21(1):202. PubMed ID: 33906598 [TBL] [Abstract][Full Text] [Related]
5. RNA-Seq analysis reveals that multiple phytohormone biosynthesis and signal transduction pathways are reprogrammed in curled-cotyledons mutant of soybean [Glycine max (L.) Merr]. Shi G; Huang F; Gong Y; Xu G; Yu J; Hu Z; Cai Q; Yu D BMC Genomics; 2014 Jun; 15(1):510. PubMed ID: 24952381 [TBL] [Abstract][Full Text] [Related]
6. Characterization of phytohormone and transcriptome reprogramming profiles during maize early kernel development. Ma C; Li B; Wang L; Xu ML; Lizhu E; Jin H; Wang Z; Ye JR BMC Plant Biol; 2019 May; 19(1):197. PubMed ID: 31088353 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic analysis of the maize inbred line Chang7-2 and a large-grain mutant tc19. Zhang Y; Jiao F; Li J; Pei Y; Zhao M; Song X; Guo X BMC Genomics; 2022 Jan; 23(1):4. PubMed ID: 34983391 [TBL] [Abstract][Full Text] [Related]
8. Combined BSA-Seq and RNA-Seq Reveal Genes Associated with the Visual Stay-Green of Maize ( Zheng R; Deng M; Lv D; Tong B; Liu Y; Luo H Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139444 [TBL] [Abstract][Full Text] [Related]
9. Integrating transcriptome, co-expression and QTL-seq analysis reveals that primary root growth in maize is regulated via flavonoid biosynthesis and auxin signal transduction. Wang Y; Sun H; Wang H; Yang X; Xu Y; Yang Z; Xu C; Li P J Exp Bot; 2021 Jun; 72(13):4773-4795. PubMed ID: 33909071 [TBL] [Abstract][Full Text] [Related]
10. Comparative transcriptomic analysis of maize ear heterosis during the inflorescence meristem differentiation stage. Shi X; Li W; Guo Z; Wu M; Zhang X; Yuan L; Qiu X; Xing Y; Sun X; Xie H; Tang J BMC Plant Biol; 2022 Jul; 22(1):348. PubMed ID: 35843937 [TBL] [Abstract][Full Text] [Related]
11. Integrative transcriptome analysis uncovers common components containing CPS2 regulated by maize lncRNA GARR2 in gibberellin response. Zheng Z; Li W; Ding Y; Wu Y; Jiang Q; Wang Y Planta; 2024 May; 259(6):146. PubMed ID: 38713242 [TBL] [Abstract][Full Text] [Related]
12. Candidate loci for the kernel row number in maize revealed by a combination of transcriptome analysis and regional association mapping. An Y; Chen L; Li YX; Li C; Shi Y; Song Y; Zhang D; Li Y; Wang T BMC Plant Biol; 2019 May; 19(1):201. PubMed ID: 31096901 [TBL] [Abstract][Full Text] [Related]
13. Maize transcriptomic repertoires respond to gibberellin stimulation. Wang Y; Wang X; Deng D; Wang Y Mol Biol Rep; 2019 Aug; 46(4):4409-4421. PubMed ID: 31144186 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Transcriptional Responses of the Inflorescence Meristems in Jatropha curcas Following Gibberellin Treatment. Hui WK; Wang Y; Chen XY; Zayed MZ; Wu GJ Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29389867 [No Abstract] [Full Text] [Related]
15. Combined Analysis of BSA-Seq Based Mapping, RNA-Seq, and Metabolomic Unraveled Candidate Genes Associated with Panicle Grain Number in Rice ( Ma Y; Mackon E; Jeazet Dongho Epse Mackon GC; Zhao Y; Li Q; Dai X; Yao Y; Xia X; Nong B; Liu P Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883474 [TBL] [Abstract][Full Text] [Related]
16. A spatial transcriptome map of the developing maize ear. Wang Y; Luo Y; Guo X; Li Y; Yan J; Shao W; Wei W; Wei X; Yang T; Chen J; Chen L; Ding Q; Bai M; Zhuo L; Li L; Jackson D; Zhang Z; Xu X; Yan J; Liu H; Liu L; Yang N Nat Plants; 2024 May; 10(5):815-827. PubMed ID: 38745100 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome profiling analysis revealed co-regulation of multiple pathways in jujube during infection by 'Candidatus Phytoplasma ziziphi'. Wang H; Ye X; Li J; Tan B; Chen P; Cheng J; Wang W; Zheng X; Feng J Gene; 2018 Jul; 665():82-95. PubMed ID: 29709641 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Pan Y; Zhao SW; Tang XL; Wang S; Wang X; Zhang XX; Zhou JJ; Xi JH Genome; 2020 Jan; 63(1):1-12. PubMed ID: 31533014 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome Profiling of Maize ( Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic analysis reveals somatic embryogenesis-associated signaling pathways and gene expression regulation in maize (Zea mays L.). Ding M; Dong H; Xue Y; Su S; Wu Y; Li S; Liu H; Li H; Han J; Shan X; Yuan Y Plant Mol Biol; 2020 Dec; 104(6):647-663. PubMed ID: 32910317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]