These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 36675051)

  • 1. The
    Williamson KS; Dlakić M; Akiyama T; Franklin MJ
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa.
    Schurr MJ; Deretic V
    Mol Microbiol; 1997 Apr; 24(2):411-20. PubMed ID: 9159526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of genes in the σ²² regulon of Pseudomonas aeruginosa required for cell envelope homeostasis in either the planktonic or the sessile mode of growth.
    Wood LF; Ohman DE
    mBio; 2012; 3(3):. PubMed ID: 22589289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cautionary Notes on the Use of Arabinose- and Rhamnose-Inducible Expression Vectors in Pseudomonas aeruginosa.
    McMackin EAW; Corley JM; Karash S; Marden J; Wolfgang MC; Yahr TL
    J Bacteriol; 2021 Jul; 203(16):e0022421. PubMed ID: 34096777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global gene expression and phenotypic analysis of a Vibrio cholerae rpoH deletion mutant.
    Slamti L; Livny J; Waldor MK
    J Bacteriol; 2007 Jan; 189(2):351-62. PubMed ID: 17085549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Sinorhizobium meliloti RpoH-Regulated Gene Is Involved in Iron-Sulfur Protein Metabolism and Effective Plant Symbiosis under Intrinsic Iron Limitation.
    Sasaki S; Minamisawa K; Mitsui H
    J Bacteriol; 2016 Sep; 198(17):2297-306. PubMed ID: 27297881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the RpoH-dependent regulon and general stress response in Neisseria gonorrhoeae.
    Gunesekere IC; Kahler CM; Powell DR; Snyder LA; Saunders NJ; Rood JI; Davies JK
    J Bacteriol; 2006 Jul; 188(13):4769-76. PubMed ID: 16788186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus.
    Wu J; Newton A
    J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of an ATP-dependent protease, PA0779/AsrA, in inducing heat shock in response to tobramycin in Pseudomonas aeruginosa.
    Kindrachuk KN; Fernández L; Bains M; Hancock RE
    Antimicrob Agents Chemother; 2011 May; 55(5):1874-82. PubMed ID: 21357290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three disparately regulated genes for sigma 32-like transcription factors in Bradyrhizobium japonicum.
    Narberhaus F; Krummenacher P; Fischer HM; Hennecke H
    Mol Microbiol; 1997 Apr; 24(1):93-104. PubMed ID: 9140968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing.
    Schuster M; Hawkins AC; Harwood CS; Greenberg EP
    Mol Microbiol; 2004 Feb; 51(4):973-85. PubMed ID: 14763974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa.
    Schurr MJ; Yu H; Boucher JC; Hibler NS; Deretic V
    J Bacteriol; 1995 Oct; 177(19):5670-9. PubMed ID: 7559357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo.
    Zhao K; Liu M; Burgess RR
    J Biol Chem; 2005 May; 280(18):17758-68. PubMed ID: 15757896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning the gene for the heat shock response positive regulator (sigma 32 homolog) from Pseudomonas aeruginosa.
    Naczynski ZM; Mueller C; Kropinski AM
    Can J Microbiol; 1995 Jan; 41(1):75-87. PubMed ID: 7728657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and primary sequence of the rpoH gene from Pseudomonas aeruginosa.
    Benvenisti L; Koby S; Rutman A; Giladi H; Yura T; Oppenheim AB
    Gene; 1995 Mar; 155(1):73-6. PubMed ID: 7698670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory conservation and divergence of sigma32 homologs from gram-negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens.
    Nakahigashi K; Yanagi H; Yura T
    J Bacteriol; 1998 May; 180(9):2402-8. PubMed ID: 9573192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of Rhodobacter sphaeroides RpoHII, a second member of the heat shock sigma factor family.
    Green HA; Donohue TJ
    J Bacteriol; 2006 Aug; 188(16):5712-21. PubMed ID: 16885439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global gene expression and the role of sigma factors in Neisseria gonorrhoeae in interactions with epithelial cells.
    Du Y; Lenz J; Arvidson CG
    Infect Immun; 2005 Aug; 73(8):4834-45. PubMed ID: 16040997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter.
    Wu J; Newton A
    J Bacteriol; 1997 Jan; 179(2):514-21. PubMed ID: 8990305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.