BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36675149)

  • 1. Design, Synthesis and Actual Applications of the Polymers Containing Acidic P-OH Fragments: Part 2-Sidechain Phosphorus-Containing Polyacids.
    Nifant'ev IE; Ivchenko PV
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, Synthesis and Actual Applications of the Polymers Containing Acidic P-OH Fragments: Part 1. Polyphosphodiesters.
    Nifant'ev IE; Ivchenko PV
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer-Supported Phosphoric, Phosphonic and Phosphinic Acids-From Synthesis to Properties and Applications in Separation Processes.
    Głowińska A; Trochimczuk AW
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32942756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Pot Synthesis of Polymers Containing PC Bonds in the Main Chain.
    Mathew S; Naganawa Y; Jiang F; Wischert R; Streiff S; Metivier P; Nakajima Y
    Macromol Rapid Commun; 2023 May; 44(9):e2200921. PubMed ID: 36603223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications.
    Strasser P; Teasdale I
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32276516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, and metal binding of novel Pseudo- oligopeptides containing two phosphinic acid groups.
    Ye Y; Liu M; Kao JL; Marshall GR
    Biopolymers; 2008 Jan; 89(1):72-85. PubMed ID: 17910046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and biologically relevant properties of polyphosphazene polyacids.
    Andrianov AK; Svirkin YY; LeGolvan MP
    Biomacromolecules; 2004; 5(5):1999-2006. PubMed ID: 15360316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and modifications of phosphinic dipeptide analogues.
    Mucha A
    Molecules; 2012 Nov; 17(11):13530-68. PubMed ID: 23154272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers.
    Henke H; Brüggemann O; Teasdale I
    Macromol Rapid Commun; 2017 Feb; 38(4):. PubMed ID: 28044384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus and Silicon-Based Macromolecules as Degradable Biomedical Polymers.
    Haudum S; Strasser P; Teasdale I
    Macromol Biosci; 2023 Nov; 23(11):e2300127. PubMed ID: 37326117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyhomologation. A living C1 polymerization.
    Luo J; Shea KJ
    Acc Chem Res; 2010 Nov; 43(11):1420-33. PubMed ID: 20825177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complexation of metal ions with TRAP (1,4,7-triazacyclononane phosphinic acid) ligands and 1,4,7-triazacyclononane-1,4,7-triacetic acid: phosphinate-containing ligands as unique chelators for trivalent gallium.
    Šimeček J; Schulz M; Notni J; Plutnar J; Kubíček V; Havlíčková J; Hermann P
    Inorg Chem; 2012 Jan; 51(1):577-90. PubMed ID: 22221285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(dithiophosphate)s, a New Class of Phosphorus- and Sulfur-Containing Functional Polymers by a Catalyst-Free Facile Reaction between Diols and Phosphorus Pentasulfide.
    Szabó Á; Szarka G; Trif L; Gyarmati B; Bereczki L; Iván B; Kovács E
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyphosphazenes: Phosphorus in Inorganic-Organic Polymers.
    Allcock HR; Chen C
    J Org Chem; 2020 Nov; 85(22):14286-14297. PubMed ID: 33085889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus-Containing Fluoropolymers: State of the Art and Applications.
    Wehbi M; Mehdi A; Negrell C; David G; Alaaeddine A; Améduri B
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):38-59. PubMed ID: 31801016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(oxazoline)s with tapered minidendritic side groups as models for the design of synthetic macromolecules with tertiary structure. A demonstration of the limitations of living polymerization in the design of 3-D structures based on single polymer chains.
    Percec V; Holerca MN; Uchida S; Yeardley DJ; Ungar G
    Biomacromolecules; 2001; 2(3):729-40. PubMed ID: 11710026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic applications of hypophosphite derivatives in reduction.
    Guyon C; Métay E; Popowycz F; Lemaire M
    Org Biomol Chem; 2015 Aug; 13(29):7879-906. PubMed ID: 26083977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential chemical transformation of phosphinic acid derivatives and their applications in the synthesis of drugs.
    Abdou MM; El-Saeed RA
    Bioorg Chem; 2019 Sep; 90():103039. PubMed ID: 31220667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ring-opening metathesis polymerization of 18-e Cobalt(I)-containing norbornene and application as heterogeneous macromolecular catalyst in atom transfer radical polymerization.
    Yan Y; Zhang J; Wilbon P; Qiao Y; Tang C
    Macromol Rapid Commun; 2014 Nov; 35(21):1840-5. PubMed ID: 25250694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-phosphinic acid from the Nantan meteorite.
    Bryant DE; Kee TP
    Chem Commun (Camb); 2006 Jun; (22):2344-6. PubMed ID: 16733574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.