These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3667521)

  • 21. Improvement of P450(BM-3) whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli.
    Schewe H; Kaup BA; Schrader J
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):55-65. PubMed ID: 18057930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture.
    Amaral JA; Ekins A; Richards SR; Knowles R
    Appl Environ Microbiol; 1998 Feb; 64(2):520-5. PubMed ID: 9464387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of alpha-pinene oxide and [2H7]-2,5,6-trimethyl-hept-(2E)-enoic acid by Pseudomonas fluorescens NCIMB 11761.
    Zorn H; Neuser F; Berger RG
    J Biotechnol; 2004 Feb; 107(3):255-63. PubMed ID: 14736461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autoxidation versus biotransformation of alpha-pinene to flavors with Pleurotus sapidus: regioselective hydroperoxidation of alpha-pinene and stereoselective dehydrogenation of verbenol.
    Krings U; Lehnert N; Fraatz MA; Hardebusch B; Zorn H; Berger RG
    J Agric Food Chem; 2009 Nov; 57(21):9944-50. PubMed ID: 19817425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A membrane bioreactor for the biotransformation of alpha-pinene oxide to isonovalal by Pseudomonas fluorescens NCIMB 11671.
    Boontawan A; Stuckey DC
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):643-9. PubMed ID: 16088347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. P450(BM-3)-catalyzed whole-cell biotransformation of alpha-pinene with recombinant Escherichia coli in an aqueous-organic two-phase system.
    Schewe H; Holtmann D; Schrader J
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):849-57. PubMed ID: 19266193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of isonovalal production from alpha-pinene oxide using permeabilized cells of Pseudomonas rhodesiae CIP 107491.
    Fontanille P; Larroche C
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):534-40. PubMed ID: 12536252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of pinene by Bacillus pallidus BR425.
    Savithiry N; Gage D; Fu W; Oriel P
    Biodegradation; 1998; 9(5):337-41. PubMed ID: 10192895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial degradation of hydrocarbons. Catabolism of 1-phenylalkanes by Nocardia salmonicolor.
    Sariaslani FS; Harper DB; Higgins IJ
    Biochem J; 1974 Apr; 140(1):31-45. PubMed ID: 4451551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism of acetylene by Nocardia rhodochrous.
    Kanner D; Bartha R
    J Bacteriol; 1982 May; 150(2):989-92. PubMed ID: 6121789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Themophilic biofiltration of methanol and alpha-pinene.
    Dhamwichukorn S; Kleinheinz GT; Bagley ST
    J Ind Microbiol Biotechnol; 2001 Mar; 26(3):127-33. PubMed ID: 11420651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strain improvement of Aspergillus sp. and Penicillium sp. by induced mutation for biotransformation of alpha-pinene to verbenol.
    Agrawal R; Deepika NU; Joseph R
    Biotechnol Bioeng; 1999 Apr; 63(2):249-52. PubMed ID: 10099602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of α-Terpineol production by the biotransformation of R-(+)-limonene and (-)-β-pinene.
    Rottava I; Cortina PF; Martello E; Cansian RL; Toniazzo G; Antunes OA; Oestreicher EG; Treichel H; de Oliveira D
    Appl Biochem Biotechnol; 2011 Jun; 164(4):514-23. PubMed ID: 21234702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosynthesis of monoterpenes. Stereochemical implications of acyclic and monocyclic olefin formation by (+)- and (-)-pinene cyclases from sage.
    Croteau R; Satterwhite DM
    J Biol Chem; 1989 Sep; 264(26):15309-15. PubMed ID: 2768265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics and thermodynamics of atmospherically relevant aqueous phase reactions of α-pinene oxide.
    Bleier DB; Elrod MJ
    J Phys Chem A; 2013 May; 117(20):4223-32. PubMed ID: 23614856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transformation of terpenes using a Picea abies suspension culture.
    Lindmark-Henriksson M; Isaksson D; Vanek T; Valterová I; Högberg HE; Sjödin K
    J Biotechnol; 2004 Jan; 107(2):173-84. PubMed ID: 14711500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monoterpene synthases of loblolly pine (Pinus taeda) produce pinene isomers and enantiomers.
    Phillips MA; Savage TJ; Croteau R
    Arch Biochem Biophys; 1999 Dec; 372(1):197-204. PubMed ID: 10562434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biotransformation of (-)-a-pinene by Botrytis cinerea.
    Farooq A; Tahara S; Choudhary MI; Atta-ur-Rahman ; Ahmed Z; Hüsnü CB; Demirci F
    Z Naturforsch C J Biosci; 2002; 57(3-4):303-6. PubMed ID: 12064731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems.
    Hylemon PB; Harder J
    FEMS Microbiol Rev; 1998 Dec; 22(5):475-88. PubMed ID: 9990726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. alpha-Pinene metabolism by Pseudomonas putida.
    Tudroszen NJ; Kelly DP; Millis NF
    Biochem J; 1977 Nov; 168(2):315-8. PubMed ID: 597274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.