These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3667521)

  • 41. Two different primary oxidation mechanisms during biotransformation of thymol by gram-positive bacteria of the genera Nocardia and Mycobacterium.
    Hahn V; Sünwoldt K; Mikolasch A; Schauer F
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1289-97. PubMed ID: 22828982
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of a monoterpene synthase from Paeonia lactiflora producing α-pinene as its single product.
    Ma X; Guo J; Ma Y; Jin B; Zhan Z; Yuan Y; Huang L
    Biotechnol Lett; 2016 Jul; 38(7):1213-9. PubMed ID: 27053081
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formation of trans-verbenol and verbenone from alpha-pinene catalysed by immobilised Picea abies cells.
    Vanek T; Halík J; Vanková R; Valterová I
    Biosci Biotechnol Biochem; 2005 Feb; 69(2):321-5. PubMed ID: 15725657
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbial degradation of monoterpenes in the absence of molecular oxygen.
    Harder J; Probian C
    Appl Environ Microbiol; 1995 Nov; 61(11):3804-8. PubMed ID: 8526489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biotransformation of benzothiophene by isopropylbenzene-degrading bacteria.
    Eaton RW; Nitterauer JD
    J Bacteriol; 1994 Jul; 176(13):3992-4002. PubMed ID: 8021182
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of cis- and trans-verbenol in human urine after occupational exposure to terpenes.
    Eriksson K; Levin JO
    Int Arch Occup Environ Health; 1990; 62(5):379-83. PubMed ID: 2228258
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioconversion of α-pinene by a novel cold-adapted fungus Chrysosporium pannorum.
    Trytek M; Jędrzejewski K; Fiedurek J
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):181-8. PubMed ID: 25487757
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolism of alpha-terpineol by Pseudomonas incognita.
    Madyastha KM; Renganathan V
    Can J Microbiol; 1984 Dec; 30(12):1429-36. PubMed ID: 6525582
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioconversion of alpha pinene to verbenone by resting cells of Aspergillus niger.
    Agrawal R; Joseph R
    Appl Microbiol Biotechnol; 2000 Mar; 53(3):335-7. PubMed ID: 10772475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of catabolism in Nocardia erythropolis.
    Pang HL; Bradley SG
    Mycologia; 1974; 66(1):48-60. PubMed ID: 4820729
    [No Abstract]   [Full Text] [Related]  

  • 51. Antibacterial Activity and Time-kill Kinetics of Positive Enantiomer of α-pinene Against Strains of Staphylococcus aureus and Escherichia coli.
    de Sousa Eduardo L; Farias TC; Ferreira SB; Ferreira PB; Lima ZN; Ferreira SB
    Curr Top Med Chem; 2018; 18(11):917-924. PubMed ID: 29998807
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolism of citral, an alpha,beta-unsaturated aldehyde, in male F344 rats.
    Diliberto JJ; Srinivas P; Overstreet D; Usha G; Burka LT; Birnbaum LS
    Drug Metab Dispos; 1990; 18(6):866-75. PubMed ID: 1981530
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbial oxidation of (-)-α-pinene to verbenol production by newly isolated strains.
    Rottava I; Cortina PF; Zanella CA; Cansian RL; Toniazzo G; Treichel H; Antunes OA; Oestreicher EG; de Oliveira D
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2221-31. PubMed ID: 20526823
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Papaverine degradation with papaverine mutants of a Nocardia sp.
    Hauer B; Haase-Aschoff K; Lingens F
    Hoppe Seylers Z Physiol Chem; 1982 May; 363(5):499-506. PubMed ID: 6807797
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purification, characterization, and properties of an aryl aldehyde oxidoreductase from Nocardia sp. strain NRRL 5646.
    Li T; Rosazza JP
    J Bacteriol; 1997 Jun; 179(11):3482-7. PubMed ID: 9171390
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial metabolism of amino alcohols. Aminoacetone metabolism via 1-aminopropan-2-ol in Pseudomonas sp. N.C.I.B. 8858.
    Faulkner A; Turner JM
    Biochem J; 1974 Feb; 138(2):263-76. PubMed ID: 4362743
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monoterpene biosynthesis: isotope effects associated with bicyclic olefin formation catalyzed by pinene synthases from sage (Salvia officinalis).
    Wagschal KC; Pyun HJ; Coates RM; Croteau R
    Arch Biochem Biophys; 1994 Feb; 308(2):477-87. PubMed ID: 8109978
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine.
    Salomon MV; Bottini R; de Souza Filho GA; Cohen AC; Moreno D; Gil M; Piccoli P
    Physiol Plant; 2014 Aug; 151(4):359-74. PubMed ID: 24118032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial metabolism of aromatic nitriles. Enzymology of C-N cleavage by Nocardia sp. (Rhodochrous group) N.C.I.B. 11216.
    Harper DB
    Biochem J; 1977 Aug; 165(2):309-19. PubMed ID: 21655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.