These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 36675371)
41. Robotic Exoskeleton Gait Training in Stroke: An Electromyography-Based Evaluation. Longatelli V; Pedrocchi A; Guanziroli E; Molteni F; Gandolla M Front Neurorobot; 2021; 15():733738. PubMed ID: 34899227 [TBL] [Abstract][Full Text] [Related]
42. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Hidler J; Nichols D; Pelliccio M; Brady K; Campbell DD; Kahn JH; Hornby TG Neurorehabil Neural Repair; 2009 Jan; 23(1):5-13. PubMed ID: 19109447 [TBL] [Abstract][Full Text] [Related]
43. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation. Calabrò RS; Billeri L; Ciappina F; Balletta T; Porcari B; Cannavò A; Pignolo L; Manuli A; Naro A Expert Rev Med Devices; 2022 Jan; 19(1):83-95. PubMed ID: 33616471 [TBL] [Abstract][Full Text] [Related]
44. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial. Straudi S; Manfredini F; Lamberti N; Zamboni P; Bernardi F; Marchetti G; Pinton P; Bonora M; Secchiero P; Tisato V; Volpato S; Basaglia N Trials; 2017 Feb; 18(1):88. PubMed ID: 28241776 [TBL] [Abstract][Full Text] [Related]
45. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Morone G; Bragoni M; Iosa M; De Angelis D; Venturiero V; Coiro P; Pratesi L; Paolucci S Neurorehabil Neural Repair; 2011 Sep; 25(7):636-44. PubMed ID: 21444654 [TBL] [Abstract][Full Text] [Related]
46. Maximum walking speeds obtained using treadmill and overground robot system in persons with post-stroke hemiplegia. Capó-Lugo CE; Mullens CH; Brown DA J Neuroeng Rehabil; 2012 Oct; 9():80. PubMed ID: 23057500 [TBL] [Abstract][Full Text] [Related]
47. Intensity Modulated Exoskeleton Gait Training Post Stroke. Nolan KJ; Ames GR; Dandola CM; Breighner JE; Franco S; Karunakaran KK; Saleh S Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082984 [TBL] [Abstract][Full Text] [Related]
48. Utilization of Robotic Exoskeleton for Overground Walking in Acute and Chronic Stroke. Nolan KJ; Karunakaran KK; Roberts P; Tefertiller C; Walter AM; Zhang J; Leslie D; Jayaraman A; Francisco GE Front Neurorobot; 2021; 15():689363. PubMed ID: 34539371 [TBL] [Abstract][Full Text] [Related]
49. Comparative Effects of Different Assistance Force During Robot-Assisted Gait Training on Locomotor Functions in Patients With Subacute Stroke: An Assessor-Blind, Randomized Controlled Trial. Park IJ; Park JH; Seong HY; You JSH; Kim SJ; Min JH; Ko HY; Shin YI Am J Phys Med Rehabil; 2019 Jan; 98(1):58-64. PubMed ID: 30142092 [TBL] [Abstract][Full Text] [Related]
51. Safety & efficacy of a robotic hip exoskeleton on outpatient stroke rehabilitation. Macaluso R; Giffhorn M; Prokup S; Cleland B; Lee J; Lim B; Lee M; Lee HJ; Madhavan S; Jayaraman A J Neuroeng Rehabil; 2024 Jul; 21(1):127. PubMed ID: 39080666 [TBL] [Abstract][Full Text] [Related]
52. Feasibility and Usability of a Robot-Assisted Complex Upper and Lower Limb Rehabilitation System in Patients with Stroke: A Pilot Study. Kim KT; Choi Y; Cho JH; Lee S Ann Rehabil Med; 2023 Apr; 47(2):108-117. PubMed ID: 37137570 [TBL] [Abstract][Full Text] [Related]
53. Who may have durable benefit from robotic gait training?: a 2-year follow-up randomized controlled trial in patients with subacute stroke. Morone G; Iosa M; Bragoni M; De Angelis D; Venturiero V; Coiro P; Riso R; Pratesi L; Paolucci S Stroke; 2012 Apr; 43(4):1140-2. PubMed ID: 22180255 [TBL] [Abstract][Full Text] [Related]
54. Effects of robotic gait training after stroke: A meta-analysis. Moucheboeuf G; Griffier R; Gasq D; Glize B; Bouyer L; Dehail P; Cassoudesalle H Ann Phys Rehabil Med; 2020 Nov; 63(6):518-534. PubMed ID: 32229177 [TBL] [Abstract][Full Text] [Related]
55. Gait training in subacute non-ambulatory stroke patients using a full weight-bearing gait-assistance robot: A prospective, randomized, open, blinded-endpoint trial. Ochi M; Wada F; Saeki S; Hachisuka K J Neurol Sci; 2015; 353(1-2):130-6. PubMed ID: 25956233 [TBL] [Abstract][Full Text] [Related]
56. Effect of Robot Assisted Gait Training on Motor and Walking Function in Patients with Subacute Stroke: A Random Controlled Study. Li DX; Zha FB; Long JJ; Liu F; Cao J; Wang YL J Stroke Cerebrovasc Dis; 2021 Jul; 30(7):105807. PubMed ID: 33895428 [TBL] [Abstract][Full Text] [Related]
57. The effect of robot-assisted gait training on cortical activation in stroke patients: A functional near-infrared spectroscopy study. Song KJ; Chun MH; Lee J; Lee C NeuroRehabilitation; 2021; 49(1):65-73. PubMed ID: 33998555 [TBL] [Abstract][Full Text] [Related]
58. Early body weight-supported overground walking training in patients with stroke in subacute phase compared to conventional physiotherapy: a randomized controlled pilot study. Brunelli S; Iosa M; Fusco FR; Pirri C; Di Giunta C; Foti C; Traballesi M Int J Rehabil Res; 2019 Dec; 42(4):309-315. PubMed ID: 31425349 [TBL] [Abstract][Full Text] [Related]
59. Self-selected speed gait training in Parkinson's disease: robot-assisted gait training with virtual reality versus gait training on the ground. Fundarò C; Maestri R; Ferriero G; Chimento P; Taveggia G; Casale R Eur J Phys Rehabil Med; 2019 Aug; 55(4):456-462. PubMed ID: 30370751 [TBL] [Abstract][Full Text] [Related]
60. The Efficacy of Gait Training Using a Body Weight Support Treadmill and Visual Biofeedback in Patients with Subacute Stroke: A Randomized Controlled Trial. Drużbicki M; Przysada G; Guzik A; Brzozowska-Magoń A; Kołodziej K; Wolan-Nieroda A; Majewska J; Kwolek A Biomed Res Int; 2018; 2018():3812602. PubMed ID: 29850509 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]