These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36675878)
1. Antifungal Activity and Biocontrol Potential of Li W; Luo T; Li J; Zhang J; Wu M; Yang L; Li G J Fungi (Basel); 2022 Dec; 9(1):. PubMed ID: 36675878 [TBL] [Abstract][Full Text] [Related]
2. The Identity, Virulence, and Antifungal Effects of the Didymellacesous Fungi Associated with the Rapeseed Blackleg Pathogen Cheng J; Luo T; Wu M; Yang L; Chen W; Li G; Zhang J J Fungi (Basel); 2023 Dec; 9(12):. PubMed ID: 38132768 [TBL] [Abstract][Full Text] [Related]
3. Large-Scale Surveys of Blackleg of Oilseed Rape ( Deng Y; Li JC; Lyv X; Xu JW; Wu MD; Zhang J; Yang L; Li GQ Plant Dis; 2023 May; 107(5):1408-1417. PubMed ID: 36222724 [TBL] [Abstract][Full Text] [Related]
4. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum. Yang F; Abdelnabby H; Xiao Y Microb Pathog; 2015 Dec; 89():169-76. PubMed ID: 26521137 [TBL] [Abstract][Full Text] [Related]
5. Genome Mining and Evaluation of the Biocontrol Potential of Chlebek D; Pinski A; Żur J; Michalska J; Hupert-Kocurek K Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228091 [TBL] [Abstract][Full Text] [Related]
6. Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease. Schmidt CS; Mrnka L; Lovecká P; Frantík T; Fenclová M; Demnerová K; Vosátka M Sci Rep; 2021 Feb; 11(1):3810. PubMed ID: 33589671 [TBL] [Abstract][Full Text] [Related]
7. Endophytic Beauveria bassiana induces biosynthesis of flavonoids in oilseed rape following both seed inoculation and natural colonization. Muola A; Birge T; Helander M; Mathew S; Harazinova V; Saikkonen K; Fuchs B Pest Manag Sci; 2024 May; 80(5):2461-2470. PubMed ID: 37467342 [TBL] [Abstract][Full Text] [Related]
8. Effect of Water Flooding on Survival of Leptosphaeria biglobosa 'brassicae' in Stubble of Oilseed Rape (Brassica napus) in Central China. Cai X; Zhang J; Wu M; Jiang D; Li G; Yang L Plant Dis; 2015 Oct; 99(10):1426-1433. PubMed ID: 30690998 [TBL] [Abstract][Full Text] [Related]
9. Brassica napus Genome Possesses Extraordinary High Number of CAMTA Genes and CAMTA3 Contributes to PAMP Triggered Immunity and Resistance to Sclerotinia sclerotiorum. Rahman H; Xu YP; Zhang XR; Cai XZ Front Plant Sci; 2016; 7():581. PubMed ID: 27200054 [TBL] [Abstract][Full Text] [Related]
10. A Novel Strain of Ma W; Ding J; Jia Q; Li Q; Jiao S; Guo X; Fan C; Chen Y; Hu Z Microorganisms; 2024 Mar; 12(3):. PubMed ID: 38543662 [TBL] [Abstract][Full Text] [Related]
11. Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. Xu J; Jia W; Hu C; Nie M; Ming J; Cheng Q; Cai M; Sun X; Li X; Zheng X; Wang J; Zhao X Environ Pollut; 2020 Feb; 257():113495. PubMed ID: 31733958 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [TBL] [Abstract][Full Text] [Related]
13. The use of Pseudomonas fluorescens P13 to control sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. Li H; Li H; Bai Y; Wang J; Nie M; Li B; Xiao M J Microbiol; 2011 Dec; 49(6):884-9. PubMed ID: 22203550 [TBL] [Abstract][Full Text] [Related]
14. Genetic Diversity and Population Structure of Zhou K; Zhang J; Yang L; Li G; Wu M J Fungi (Basel); 2023 Nov; 9(11):. PubMed ID: 37998897 [TBL] [Abstract][Full Text] [Related]
15. Resistance to fungal pathogens triggered by the Cf9-Avr9 response in tomato and oilseed rape in the absence of hypersensitive cell death. Hennin C; Diederichsen E; Höfte M Mol Plant Pathol; 2002 Jan; 3(1):31-41. PubMed ID: 20569306 [TBL] [Abstract][Full Text] [Related]
16. First Report of Oilseed Rape Stem Rot Caused by Sclerotinia sclerotiorum in Greece. Tziros GT; Bardas GA; Tsialtas JT; Karaoglanidis GS Plant Dis; 2008 Oct; 92(10):1473. PubMed ID: 30769549 [TBL] [Abstract][Full Text] [Related]
17. Development of a Biofungicide Using a Mycoparasitic Fungus Shin TS; Yu NH; Lee J; Choi GJ; Kim JC; Shin CS Plant Pathol J; 2017 Jun; 33(3):337-344. PubMed ID: 28592952 [TBL] [Abstract][Full Text] [Related]
18. Strain identification and metabolites isolation of Aspergillus capensis CanS-34A from Brassica napus. Qin J; Lyu A; Zhang QH; Yang L; Zhang J; Wu MD; Li GQ Mol Biol Rep; 2019 Jun; 46(3):3451-3460. PubMed ID: 31012026 [TBL] [Abstract][Full Text] [Related]
19. First Report of Leptosphaeria biglobosa (Blackleg) on Brassica oleracea (Cabbage) in Mexico. Dilmaghani A; Balesdent MH; Rouxel T; Moreno-Rico O Plant Dis; 2010 Jun; 94(6):791. PubMed ID: 30754331 [TBL] [Abstract][Full Text] [Related]
20. Viral cross-class transmission results in disease of a phytopathogenic fungus. Deng Y; Zhou K; Wu M; Zhang J; Yang L; Chen W; Li G ISME J; 2022 Dec; 16(12):2763-2774. PubMed ID: 36045287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]