These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 36676413)
1. Leaching Stability and Redox Activity of Copper-MFI Zeolites Prepared by Solid-State Transformations: Comparison with Ion-Exchanged and Impregnated Samples. Yashnik SA; Surovtsova TA; Salnikov AV; Parmon VN Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676413 [TBL] [Abstract][Full Text] [Related]
2. Copper Sites in Copper-Exchanged ZSM-5 for CO Activation and Methanol Synthesis: XPS and FTIR Studies. Chen HY; Chen L; Lin J; Tan KL; Li J Inorg Chem; 1997 Mar; 36(7):1417-1423. PubMed ID: 11669721 [TBL] [Abstract][Full Text] [Related]
3. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia. Chen B; Xu R; Zhang R; Liu N Environ Sci Technol; 2014 Dec; 48(23):13909-16. PubMed ID: 25365767 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state reaction. Sohrabnezhad Sh; Valipour A Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():298-302. PubMed ID: 23778169 [TBL] [Abstract][Full Text] [Related]
5. Preparation and Antibacterial Activity of Nano Copper Oxide- Loaded Zeolite 10X. Ma Y; Hou J Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955555 [TBL] [Abstract][Full Text] [Related]
6. Reduction of copper in porous matrixes. Stepwise and autocatalytic reduction routes. Tkachenko OP; Klementiev KV; van den Berg MW; Koc N; Bandyopadhyay M; Birkner A; Wöll C; Gies H; Grünert W J Phys Chem B; 2005 Nov; 109(44):20979-88. PubMed ID: 16853720 [TBL] [Abstract][Full Text] [Related]
7. Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decomposition to N2. Liu Z; Amiridis MD; Chen Y J Phys Chem B; 2005 Jan; 109(3):1251-5. PubMed ID: 16851088 [TBL] [Abstract][Full Text] [Related]
8. Identification of two types of exchangeable sites for monovalent copper ions exchanged in MFI-type zeolite. Mori T; Itadani A; Tabuchi E; Sogo Y; Kumashiro R; Nagao M; Kuroda Y Phys Chem Chem Phys; 2008 Feb; 10(8):1203-12. PubMed ID: 18270622 [TBL] [Abstract][Full Text] [Related]
9. The remarkable enhancement of CO-pretreated CuO-Mn2O3/γ-Al2O3 supported catalyst for the reduction of NO with CO: the formation of surface synergetic oxygen vacancy. Li D; Yu Q; Li SS; Wan HQ; Liu LJ; Qi L; Liu B; Gao F; Dong L; Chen Y Chemistry; 2011 May; 17(20):5668-79. PubMed ID: 21688407 [TBL] [Abstract][Full Text] [Related]
10. CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing. Dong J; Tian T; Ren L; Zhang Y; Xu J; Cheng X Colloids Surf B Biointerfaces; 2015 Jan; 125():206-12. PubMed ID: 25499226 [TBL] [Abstract][Full Text] [Related]
11. Preparation of Metal-Loaded ZSM-5 Zeolite Catalyst and Its Catalytic Effect on HMF Production from Biomass. Hoang PH; Cuong TD Appl Biochem Biotechnol; 2022 Nov; 194(11):4985-4998. PubMed ID: 35679014 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of water and ethanol in MFI-type zeolites. Zhang K; Lively RP; Noel JD; Dose ME; McCool BA; Chance RR; Koros WJ Langmuir; 2012 Jun; 28(23):8664-73. PubMed ID: 22568830 [TBL] [Abstract][Full Text] [Related]
13. Comparative evaluation of synthesis routes of Cu/zeolite Y catalysts for catalytic wet peroxide oxidation of quinoline in fixed-bed reactor. Singh L; Rekha P; Chand S J Environ Manage; 2018 Jun; 215():1-12. PubMed ID: 29550542 [TBL] [Abstract][Full Text] [Related]
14. Effect of Hydrothermal Aging Treatment on Decomposition of NO by Cu-ZSM-5 and Modified Mechanism of Doping Ce against This Influence. Yang X; Wang X; Qiao X; Jin Y; Fan B Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079199 [TBL] [Abstract][Full Text] [Related]
15. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
16. Critical assessment of electron spin resonance studies on Cu(I)-NO complexes in Cu-ZSM-5 zeolites prepared by solid- and liquid-state ion exchange. Umamaheswari V; Hartmann M; Pöppl A J Phys Chem B; 2005 Oct; 109(42):19723-31. PubMed ID: 16853551 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios. Giordanino F; Vennestrøm PN; Lundegaard LF; Stappen FN; Mossin S; Beato P; Bordiga S; Lamberti C Dalton Trans; 2013 Sep; 42(35):12741-61. PubMed ID: 23842567 [TBL] [Abstract][Full Text] [Related]
18. IR Studies of the Cu Ions in Cu-Faujasites. Kuterasiński Ł; Podobiński J; Rutkowska-Zbik D; Datka J Molecules; 2019 Nov; 24(23):. PubMed ID: 31766618 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of oxygen on copper in Cu/HZSM5 zeolites. Ene AB; Bauer M; Archipov T; Roduner E Phys Chem Chem Phys; 2010 Jun; 12(24):6520-31. PubMed ID: 20505852 [TBL] [Abstract][Full Text] [Related]
20. Getting insight into the effect of CuO on red mud for the selective catalytic reduction of NO by NH Qi L; Sun Z; Tang Q; Wang J; Huang T; Sun C; Gao F; Tang C; Dong L J Hazard Mater; 2020 Sep; 396():122459. PubMed ID: 32302885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]