These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3667645)

  • 1. Disarticulation of the knee in children. A functional assessment.
    Loder RT; Herring JA
    J Bone Joint Surg Am; 1987 Oct; 69(8):1155-60. PubMed ID: 3667645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees.
    Grumillier C; Martinet N; Paysant J; André JM; Beyaert C
    J Biomech; 2008 Oct; 41(14):2926-31. PubMed ID: 18771768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of rotators on the kinematic adaptations in stubby prosthetic gait.
    Gitter A; Paynter K; Walden G; Darm T
    Am J Phys Med Rehabil; 2002 Apr; 81(4):310-4. PubMed ID: 11953550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy expenditure during walking in amputees after disarticulation of the hip. A microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee.
    Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Nakagawa A
    J Bone Joint Surg Br; 2005 Jan; 87(1):117-9. PubMed ID: 15686251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Walking characteristics of runners with a transfemoral or knee-disarticulation prosthesis.
    Kobayashi T; Hisano G; Namiki Y; Hashizume S; Hobara H
    Clin Biomech (Bristol); 2020 Dec; 80():105132. PubMed ID: 32768802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An above-knee prosthesis with a system of energy recovery: a technical note.
    Farber BS; Jacobson JS
    J Rehabil Res Dev; 1995 Nov; 32(4):337-48. PubMed ID: 8770798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait characteristics of a soldier with a traumatic hip disarticulation.
    Schnall BL; Baum BS; Andrews AM
    Phys Ther; 2008 Dec; 88(12):1568-77. PubMed ID: 18849481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the gait performance of non-fluid-based swing-phase control mechanisms in transfemoral prostheses.
    Furse A; Cleghorn W; Andrysek J
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21592917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D intersegmental knee loading in below-knee amputees across steady-state walking speeds.
    Fey NP; Neptune RR
    Clin Biomech (Bristol); 2012 May; 27(4):409-14. PubMed ID: 22138437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical influences of shoulder disarticulation prosthesis during standing and level walking.
    Bertels T; Schmalz T; Ludwigs E
    Prosthet Orthot Int; 2012 Jun; 36(2):165-72. PubMed ID: 22354885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term results after distal rectus femoris transfer as a part of multilevel surgery for the correction of stiff-knee gait in spastic diplegic cerebral palsy.
    Dreher T; Wolf SI; Maier M; Hagmann S; Vegvari D; Gantz S; Heitzmann D; Wenz W; Braatz F
    J Bone Joint Surg Am; 2012 Oct; 94(19):e142(1-10). PubMed ID: 23032593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocating gait prosthesis for the bilateral hip disarticulation amputee.
    Spence WD; Fowler NK; Nicol AC; Murray SJ
    Proc Inst Mech Eng H; 2001; 215(3):309-14. PubMed ID: 11436274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uphill and downhill walking in unilateral lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Aug; 28(2):235-42. PubMed ID: 18242995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical work performed by individual limbs of transfemoral amputees during step-to-step transitions: Effect of walking velocity.
    Bonnet X; Villa C; Fodé P; Lavaste F; Pillet H
    Proc Inst Mech Eng H; 2014 Jan; 228(1):60-6. PubMed ID: 24288379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of walking with silicone prosthesis after midtarsal (Chopart) disarticulation.
    Burger H; Erzar D; Maver T; Olensek A; Cikajlo I; Matjacić Z
    Clin Biomech (Bristol); 2009 Jul; 24(6):510-6. PubMed ID: 19386403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The influence of the C-leg knee-shin system from the Otto Bock Company in the care of above-knee amputees. A clinical-biomechanical study to define indications].
    Wetz HH; Hafkemeyer U; Drerup B
    Orthopade; 2005 Apr; 34(4):298, 300-314, 316-9. PubMed ID: 15812621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.