These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36676608)

  • 21. Cement Bypass Dust as an Ecological Binder Substitute in Autoclaved Silica-Lime Products.
    Borek K; Czapik P; Dachowski R
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Waste Basalt Fines and Recycled Concrete Components on Mechanical, Water Absorption, and Microstructure Characteristics of Concrete.
    Sharaky IA; Elamary AS; Alharthi YM
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dosage Effect of Wet-Process Tuff Silt Powder as an Alternative Material of Sand on the Performance of Reactive Powder Concrete.
    Cai Y; Lin Z; Zhang J; Lu K; Wang L; Zhao Y; Huang Q
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alkali-Activated Mortars with Recycled Fines and Hemp as a Sand.
    Pawluczuk E; Kalinowska-Wichrowska K; Soomro M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of red brick powder and lime as soft soil stabilizer.
    Salimah A; Hazmi M; Fathur Rouf Hasan M; Agung PAM; Yelvi
    F1000Res; 2021; 10():777. PubMed ID: 37224405
    [No Abstract]   [Full Text] [Related]  

  • 27. Technological behaviour and recycling potential of spent foundry sands in clay bricks.
    Alonso-Santurde R; Andrés A; Viguri JR; Raimondo M; Guarini G; Zanelli C; Dondi M
    J Environ Manage; 2011 Mar; 92(3):994-1002. PubMed ID: 21129840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of waste glass additions on quality of textile sludge-based bricks.
    Rahman A; Urabe T; Kishimoto N; Mizuhara S
    Environ Technol; 2015; 36(19):2443-50. PubMed ID: 25812619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of briquettes from the Golden Horn bottom sediments by hydro-thermal agglomeration process.
    Celik O; Elbeyli iY
    Waste Manag Res; 2004 Apr; 22(2):100-7. PubMed ID: 15206521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal and Mechanical Properties of Concrete Incorporating Silica Fume and Waste Rubber Powder.
    Lakhiar MT; Kong SY; Bai Y; Susilawati S; Zahidi I; Paul SC; Raghunandan ME
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utilization of Solid Waste from Brick Industry and Hydrated Lime in Self-Compacting Cement Pastes.
    Shah MU; Usman M; Hanif MU; Naseem I; Farooq S
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33673473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A view of microstructure with technological behavior of waste incorporated ceramic bricks.
    Nirmala G; Viruthagiri G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():76-80. PubMed ID: 25062052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Management of spent shea waste: An instrumental characterization and valorization in clay bricks construction.
    Adazabra AN; Viruthagiri G; Shanmugam N
    Waste Manag; 2017 Jun; 64():286-304. PubMed ID: 28336335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactive Powder Concrete Containing Basalt Fibers: Strength, Abrasion and Porosity.
    Grzeszczyk S; Matuszek-Chmurowska A; Vejmelková E; Černý R
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32630228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applying rail transit construction waste to make building materials: using the theory of sustainable development.
    Jia J; Ren F; Wei X; Gao Y; Qi G; Li F; Li M; Guo C
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):29663-29681. PubMed ID: 34993784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignocellulosic materials as soil-cement brick reinforcement.
    Sabino TPF; Coelho NPF; Andrade NC; Metzker SLO; Viana QS; Mendes JF; Mendes RF
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21769-21788. PubMed ID: 34773234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.
    Mao L; Wu Y; Zhang W; Huang Q
    J Environ Manage; 2019 Feb; 231():780-787. PubMed ID: 30415171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Faience Waste for the Production of Wall Products.
    Petropavlovskii K; Novichenkova T; Petropavlovskaya V; Sulman M; Fediuk R; Amran M
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response surface methodology-based optimisation of cost and compressive strength of rubberised concrete incorporating burnt clay brick powder.
    Sinkhonde D; Onchiri RO; Oyawa WO; Mwero JN
    Heliyon; 2021 Dec; 7(12):e08565. PubMed ID: 34917825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Valorization of stabilized river sediments in fired clay bricks: factory scale experiment.
    Samara M; Lafhaj Z; Chapiseau C
    J Hazard Mater; 2009 Apr; 163(2-3):701-10. PubMed ID: 18814963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.