These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36677014)

  • 1. Using Kinetic Modelling to Infer Adaptations in
    Lao-Martil D; Verhagen KJA; Valdeira Caetano AH; Pardijs IH; van Riel NAW; Wahl SA
    Metabolites; 2023 Jan; 13(1):. PubMed ID: 36677014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating yeast glycolytic dynamics at steady state growth and glucose pulses through kinetic metabolic modeling.
    Lao-Martil D; Schmitz JPJ; Teusink B; van Riel NAW
    Metab Eng; 2023 May; 77():128-142. PubMed ID: 36963461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic adjustment upon repetitive substrate perturbations using dynamic
    Suarez-Mendez CA; Ras C; Wahl SA
    Microb Cell Fact; 2017 Sep; 16(1):161. PubMed ID: 28946905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Metabolic Adaptation Under Dynamic Substrate Conditions Using a Resource-Dependent Kinetic Model: A Case Study Using
    Verhagen KJA; Eerden SA; Sikkema BJ; Wahl SA
    Front Mol Biosci; 2022; 9():863470. PubMed ID: 35651815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation.
    Wu L; Mashego MR; Proell AM; Vinke JL; Ras C; van Dam J; van Winden WA; van Gulik WM; Heijnen JJ
    Metab Eng; 2006 Mar; 8(2):160-71. PubMed ID: 16233984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New experimental and theoretical tools for metabolic engineering of micro-organisms.
    Heijnen JJ
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):11-30. PubMed ID: 15954559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts.
    Scott WT; Smid EJ; Block DE; Notebaart RA
    Microb Cell Fact; 2021 Oct; 20(1):204. PubMed ID: 34674718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new strategy for dynamic metabolic flux estimation by integrating transient metabolome data into genome-scale metabolic models.
    Liu P; Hua Y; Zhang W; Xie T; Zhuang Y; Xia J; Noorman H
    Bioprocess Biosyst Eng; 2021 Dec; 44(12):2553-2565. PubMed ID: 34459987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli metabolism under short-term repetitive substrate dynamics: adaptation and trade-offs.
    Vasilakou E; van Loosdrecht MCM; Wahl SA
    Microb Cell Fact; 2020 May; 19(1):116. PubMed ID: 32471427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae.
    Pornkamol U; Franzen CJ
    Biotechnol J; 2015 Aug; 10(8):1248-58. PubMed ID: 25880365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast "Feast/Famine" Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae.
    Suarez-Mendez CA; Sousa A; Heijnen JJ; Wahl A
    Metabolites; 2014 May; 4(2):347-72. PubMed ID: 24957030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering under uncertainty--II: analysis of yeast metabolism.
    Wang L; Hatzimanikatis V
    Metab Eng; 2006 Mar; 8(2):142-59. PubMed ID: 16413809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic Modeling of
    Lao-Martil D; Verhagen KJA; Schmitz JPJ; Teusink B; Wahl SA; van Riel NAW
    Metabolites; 2022 Jan; 12(1):. PubMed ID: 35050196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-constrained models predict the dynamics of Saccharomyces cerevisiae growth in continuous, batch and fed-batch bioreactors.
    Moreno-Paz S; Schmitz J; Martins Dos Santos VAP; Suarez-Diez M
    Microb Biotechnol; 2022 May; 15(5):1434-1445. PubMed ID: 35048533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic switches from quiescence to growth in synchronized Saccharomyces cerevisiae.
    Zhang J; Martinez-Gomez K; Heinzle E; Wahl SA
    Metabolomics; 2019 Aug; 15(9):121. PubMed ID: 31468142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic response of Aspergillus niger to periodical glucose pulse stimuli in chemostat cultures.
    Liu P; Wang S; Li C; Zhuang Y; Xia J; Noorman H
    Biotechnol Bioeng; 2021 Jun; 118(6):2265-2282. PubMed ID: 33666237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scalable method for parameter identification in kinetic models of metabolism using steady-state data.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.
    Herwig C; Von Stockar U
    Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.