These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36677067)

  • 1. Surface Modification of 3D Printed Microfluidic Devices for Controlled Wetting in Two-Phase Flow.
    Warr CA; Crawford NG; Nordin GP; Pitt WG
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-Printed Microfluidic Droplet Generator with Hydrophilic and Hydrophobic Polymers.
    Warr CA; Hinnen HS; Avery S; Cate RJ; Nordin GP; Pitt WG
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Wetting Characteristics of DLP-Based 3D Printing Outcomes under Various Printing Conditions for Microfluidic Device Fabrication.
    Kang JW; Jeon J; Lee JY; Jeon JH; Hong J
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of droplet polymeric microfluidic devices for the stable and continuous generation of aqueous droplets.
    Subramanian B; Kim N; Lee W; Spivak DA; Nikitopoulos DE; McCarley RL; Soper SA
    Langmuir; 2011 Jun; 27(12):7949-57. PubMed ID: 21608975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices.
    Jans A; Lölsberg J; Omidinia-Anarkoli A; Viermann R; Möller M; De Laporte L; Wessling M; Kuehne AJC
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31731709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic modification of SLA 3D printed droplet generators by photochemical grafting.
    Bacha TW; Manuguerra DC; Marano RA; Stanzione JF
    RSC Adv; 2021 Jun; 11(35):21745-21753. PubMed ID: 35478820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.
    Pompano RR; Platt CE; Karymov MA; Ismagilov RF
    Langmuir; 2012 Jan; 28(3):1931-41. PubMed ID: 22233156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing of Superhydrophobic Objects with Bulk Nanostructure.
    Dong Z; Vuckovac M; Cui W; Zhou Q; Ras RHA; Levkin PA
    Adv Mater; 2021 Nov; 33(45):e2106068. PubMed ID: 34580937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer.
    van der Linden PJEM; Popov AM; Pontoni D
    Lab Chip; 2020 Nov; 20(22):4128-4140. PubMed ID: 33057528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Devices Containing ZnO Nanorods with Tunable Surface Chemistry and Wetting-Independent Water Mobility.
    Hen M; Edri E; Guy O; Avrahami D; Shpaisman H; Gerber D; Sukenik CN
    Langmuir; 2019 Mar; 35(9):3265-3271. PubMed ID: 30726675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces.
    Roberts CC; Rao RR; Loewenberg M; Brooks CF; Galambos P; Grillet AM; Nemer MB
    Lab Chip; 2012 Apr; 12(8):1540-7. PubMed ID: 22398953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography.
    Männel MJ; Baysak E; Thiele J
    Molecules; 2021 May; 26(9):. PubMed ID: 34068649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unlocking the potential of 3D printed microfluidics for mass spectrometry analysis using liquid infused surfaces.
    Wang J; Curtin K; Valentine SJ; Li P
    Anal Chim Acta; 2023 Oct; 1279():341792. PubMed ID: 37827686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices.
    Subirada F; Paoli R; Sierra-Agudelo J; Lagunas A; Rodriguez-Trujillo R; Samitier J
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Materials and methods for droplet microfluidic device fabrication.
    Elvira KS; Gielen F; Tsai SSH; Nightingale AM
    Lab Chip; 2022 Mar; 22(5):859-875. PubMed ID: 35170611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of double emulsion micro-droplets in a microfluidic device using a partially hydrophilic-hydrophobic surface.
    Kamnerdsook A; Juntasaro E; Khemthongcharoen N; Chanasakulniyom M; Sripumkhai W; Pattamang P; Promptmas C; Atthi N; Jeamsaksiri W
    RSC Adv; 2021 Oct; 11(56):35653-35662. PubMed ID: 35493190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.