These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 36677115)
1. Removal Modeling and Experimental Verification of Magnetorheological Polishing Fused Silica Glass. Zhang L; Li W; Zhou J; Lu M; Liu Q; Du Y; Yang Y Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677115 [TBL] [Abstract][Full Text] [Related]
2. The Development of the Stress-Free Polishing System Based on the Positioning Error Analysis for the Deterministic Polishing of Jet Electrochemical Machining. Wang K; Wang H; Zhang Y; Shi H; Shi J Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542640 [TBL] [Abstract][Full Text] [Related]
3. Study on Material Removal Model by Reciprocating Magnetorheological Polishing. Wang R; Xiu S; Sun C; Li S; Kong X Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33917829 [TBL] [Abstract][Full Text] [Related]
4. Line contact ring magnetorheological finishing process for precision polishing of optics. Kumar Baghel P; Singh Gavel K; Sayeed Khan G; Kumar R Appl Opt; 2022 Apr; 61(10):2582-2590. PubMed ID: 35471326 [TBL] [Abstract][Full Text] [Related]
5. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head. Chen M; Liu H; Cheng J; Yu B; Fang Z Appl Opt; 2017 Jul; 56(19):5573-5582. PubMed ID: 29047518 [TBL] [Abstract][Full Text] [Related]
6. Evolution law of comet-shaped defects in magnetorheological finishing. Shu Q; Hai K; Huang W; Jiang L; Yuan S; Li K; Sun P; Tian D; Zhang Y Appl Opt; 2022 Jan; 61(3):691-698. PubMed ID: 35200773 [TBL] [Abstract][Full Text] [Related]
7. Removal rate model for magnetorheological finishing of glass. Degroote JE; Marino AE; Wilson JP; Bishop AL; Lambropoulos JC; Jacobs SD Appl Opt; 2007 Nov; 46(32):7927-41. PubMed ID: 17994145 [TBL] [Abstract][Full Text] [Related]
8. Study on mechanism of improving efficiency of permanent-magnet small ball-end magnetorheological polishing by increasing magnetorheological fluid temperature. Tian J; Chen M; Liu H; Qin B; Cheng J; Sun Y Sci Rep; 2022 May; 12(1):7705. PubMed ID: 35546348 [TBL] [Abstract][Full Text] [Related]
9. Nano-Precision Processing of NiP Coating by Magnetorheological Finishing. Xu C; Peng X; Hu H; Liu J; Li H; Luo T; Lai T Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513129 [TBL] [Abstract][Full Text] [Related]
10. Study on the influence of a magnetorheological finishing path on the mid-frequency errors of optical element surfaces. Chen C; Dai Y; Hu H; Guan C Opt Express; 2024 May; 32(11):19133-19145. PubMed ID: 38859055 [TBL] [Abstract][Full Text] [Related]
11. Experimental Study on the Effects of Alumina Abrasive Particle Behavior in MR Polishing for MEMS Applications. Kim DW; Cho MW; Seo TI; Shin YJ Sensors (Basel); 2008 Jan; 8(1):222-235. PubMed ID: 27879705 [TBL] [Abstract][Full Text] [Related]
12. Experimental Study on Ultra-Precision Polishing of Ti-6Al-4V by Ultraviolet-Induced Nanoparticle Colloid Jet Machining. Song X; Wang X; Wang S; Liu S; Ge S Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501103 [TBL] [Abstract][Full Text] [Related]
13. Theoretical Modeling Method for Material Removal Characteristics of Abrasive Water Jet Polishing under Rotating Oblique Incidence. Zhang Z; Song C; Shi F; Tie G; Zhang W; Wang B; Tian Y; Hou Z Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296043 [TBL] [Abstract][Full Text] [Related]
14. Modeling and Experimental Verification of Time-Controlled Grinding Removal Function for Optical Components. Chen F; Peng X; Sun Z; Hu H; Dai Y; Lai T Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512695 [TBL] [Abstract][Full Text] [Related]
15. High precision polishing of aluminum alloy mirrors through a combination of magnetorheological finishing and chemical mechanical polishing. Bai Y; Zhang Z; Li L; Luo X; Li F; Zhang X Opt Express; 2024 Apr; 32(9):15813-15826. PubMed ID: 38859222 [TBL] [Abstract][Full Text] [Related]
16. Effects of temperature on the removal efficiency of KDP crystal during the process of magnetorheological water-dissolution polishing. Zhang Y; Dai Y; Tie G; Hu H Appl Opt; 2016 Oct; 55(29):8308-8315. PubMed ID: 27828080 [TBL] [Abstract][Full Text] [Related]
17. Development analysis of magnetorheological precession finishing (MRPF) technology. Liu J; He J; Peng Y Opt Express; 2023 Dec; 31(26):43535-43549. PubMed ID: 38178447 [TBL] [Abstract][Full Text] [Related]
18. Distribution model of the surface roughness in magnetorheological jet polishing. Hai K; Li L; Hu H; Zhang Z; Bai Y; Luo X; Yi L; Yang X; Xue D; Zhang X Appl Opt; 2020 Oct; 59(28):8740-8750. PubMed ID: 33104556 [TBL] [Abstract][Full Text] [Related]
19. The Cause of Ribbon Fluctuation in Magnetorheological Finishing and Its Influence on Surface Mid-Spatial Frequency Error. Wang B; Shi F; Tie G; Zhang W; Song C; Tian Y; Shen Y Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630164 [TBL] [Abstract][Full Text] [Related]
20. Research on error control and compensation in magnetorheological finishing. Dai Y; Hu H; Peng X; Wang J; Shi F Appl Opt; 2011 Jul; 50(19):3321-9. PubMed ID: 21743536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]