These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36677119)

  • 21. Efficient Scavenging of Solar and Wind Energies in a Smart City.
    Wang S; Wang X; Wang ZL; Yang Y
    ACS Nano; 2016 Jun; 10(6):5696-700. PubMed ID: 27148943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of wind on strength and deformation of solar photovoltaic modules.
    Abdollahi R
    Environ Sci Pollut Res Int; 2021 May; 28(17):21589-21598. PubMed ID: 33411296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An appropriate technique for treating rural wastewater by a flow step feed system driven by wind-solar hybrid power.
    Li P; Zheng T; Li L; Ma Y; Sun X; Liu J
    Environ Res; 2020 Aug; 187():109651. PubMed ID: 32422485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A revolution of photovoltaics: persistent electricity generation beyond solar irradiation.
    Duan J; Tang Q
    Dalton Trans; 2019 Jan; 48(3):799-805. PubMed ID: 30520482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wind energy conversion technologies and engineering approaches to enhancing wind power generation: A review.
    Desalegn B; Gebeyehu D; Tamirat B
    Heliyon; 2022 Nov; 8(11):e11263. PubMed ID: 36345520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biohybrid generators based on living plants and artificial leaves: influence of leaf motion and real wind outdoor energy harvesting.
    Meder F; Armiento S; Naselli GA; Thielen M; Speck T; Mazzolai B
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34293725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure design and wireless transmission application of hybrid nanogenerators for swinging mechanical energy and solar energy harvesting.
    Shi H; Lu H; Liu X; Wang X; Wu Y; Zheng H
    Nanoscale; 2022 Aug; 14(30):10972-10979. PubMed ID: 35861171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wind energy harvester using piezoelectric materials.
    Lu C; Jiang X; Li L; Zhou H; Yang A; Xin M; Fu G; Wang X
    Rev Sci Instrum; 2022 Mar; 93(3):031502. PubMed ID: 35364975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive Fault Diagnosis for Ship Photovoltaic Modules Systems Applications.
    García E; Quiles E; Zotovic-Stanisic R; Gutiérrez SC
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation.
    Lee YJ; Qi Y; Zhou G; Lua KB
    Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transparent integrated pyroelectric-photovoltaic structure for photo-thermo hybrid power generation.
    Patel M; Park HH; Bhatnagar P; Kumar N; Lee J; Kim J
    Nat Commun; 2024 Apr; 15(1):3466. PubMed ID: 38658539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Research on optimal control strategy of wind-solar​ hybrid system based on power prediction.
    Liu S; You H; Liu Y; Feng W; Fu S
    ISA Trans; 2022 Apr; 123():179-187. PubMed ID: 33994212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation.
    Jung HY; Kim IH; Jung HJ
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29088077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range.
    Yong H; Chung J; Choi D; Jung D; Cho M; Lee S
    Sci Rep; 2016 Sep; 6():33977. PubMed ID: 27653976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling & implementation of DRLA based partially shaded solar system integration with 3-
    Guntupalli R; Sudhakaran M; Raj PA
    Heliyon; 2022 Jun; 8(6):e09669. PubMed ID: 35734560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the Potential of Flow-Induced Vibration Energy Harvesting Using a Corrugated Hyperstructure Bluff Body.
    Yuan Y; Wang H; Yang C; Sun H; Tang Y; Zhang Z
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A technical, economic, and environmental performance of grid-connected hybrid (photovoltaic-wind) power system in Algeria.
    Saheb-Koussa D; Koussa M; Said N
    ScientificWorldJournal; 2013; 2013():123160. PubMed ID: 24489488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously.
    Dudem B; Ko YH; Leem JW; Lim JH; Yu JS
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30165-30175. PubMed ID: 27759367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wind dynamics and leaf motion: Approaching the design of high-tech devices for energy harvesting for operation on plant leaves.
    Meder F; Naselli GA; Mazzolai B
    Front Plant Sci; 2022; 13():994429. PubMed ID: 36388505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.
    Samrat NH; Ahmad N; Choudhury IA; Taha Z
    PLoS One; 2015; 10(6):e0130678. PubMed ID: 26121032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.