These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36677144)

  • 1. Ray Optics Model for Optical Trapping of Biconcave Red Blood Cells.
    Tognato R; Jones PH
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cell trapping using single-beam acoustic tweezers in the Rayleigh regime.
    Yoo J; Kim J; Lee J; Kim HH
    iScience; 2023 Nov; 26(11):108178. PubMed ID: 37915606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps.
    Liao GB; Chen YQ; Bareil PB; Sheng Y; Chiou A; Chang MS
    J Biophotonics; 2014 Oct; 7(10):782-7. PubMed ID: 23740841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy.
    Mohanty K; Mohanty S; Monajembashi S; Greulich KO
    J Biomed Opt; 2007; 12(6):060506. PubMed ID: 18163801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects.
    Kauppila A; Kinnunen M; Karmenyan A; Myllylä R
    Appl Opt; 2012 Aug; 51(23):5705-12. PubMed ID: 22885584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique.
    Agrawal R; Smart T; Nobre-Cardoso J; Richards C; Bhatnagar R; Tufail A; Shima D; H Jones P; Pavesio C
    Sci Rep; 2016 Mar; 6():15873. PubMed ID: 26976672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser tweezers as a biophotonic tool to investigate the efficacy of living sickle red blood cells in response to optical deformation.
    Mohi SM; Saadon HL; Khalaf AA
    Biophys Rev; 2021 Apr; 13(2):173-184. PubMed ID: 33936317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientational dynamics of human red blood cells in an optical trap.
    Parthasarathi P; Nagesh BV; Lakkegowda Y; Iyengar SS; Ananthamurthy S; Bhattacharya S
    J Biomed Opt; 2013 Feb; 18(2):25001. PubMed ID: 23381225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Euler buckling-induced folding and rotation of red blood cells in an optical trap.
    Ghosh A; Sinha S; Dharmadhikari JA; Roy S; Dharmadhikari AK; Samuel J; Sharma S; Mathur D
    Phys Biol; 2006 Mar; 3(1):67-73. PubMed ID: 16582471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical trapping of red blood cells in living animals with a water immersion objective.
    Zhong MC; Gong L; Zhou JH; Wang ZQ; Li YM
    Opt Lett; 2013 Dec; 38(23):5134-7. PubMed ID: 24281528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Methods Cell Biol; 1998; 55():1-27. PubMed ID: 9352508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Biophys J; 1992 Feb; 61(2):569-82. PubMed ID: 19431818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells.
    Liao GB; Bareil PB; Sheng Y; Chiou A
    Opt Express; 2008 Feb; 16(3):1996-2004. PubMed ID: 18542279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Trapping and Micro-Raman Spectroscopy of Functional Red Blood Cells Using Vortex Beam for Cell Membrane Studies.
    C G; Shetty S; Bharati S; Chidangil S; Bankapur A
    Anal Chem; 2021 Apr; 93(13):5484-5493. PubMed ID: 33764040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-sheet Raman tweezers for whole-cell biochemical analysis of functional red blood cells.
    Jayraj S; Sarmah P; Ghanashyam C; Bankapur A
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123951. PubMed ID: 38277790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.
    Liu Y; Yu M
    Opt Express; 2009 Aug; 17(16):13624-38. PubMed ID: 19654770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.