These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36677145)

  • 1. An On-Chip Microscale Vacuum Chamber with High Sealing Performance Using Graphene as Lateral Feedthrough.
    Yu P; Zhan F; Rao W; Zhao Y; Fang Z; Tu Z; Li Z; Guo D; Wei X
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wafer-Level Self-Packaging Design and Fabrication of MEMS Capacitive Pressure Sensors.
    Wan Y; Li Z; Huang Z; Hu B; Lv W; Zhang C; San H; Zhang S
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wafer-Level Vacuum-Packaged Electric Field Microsensor: Structure Design, Theoretical Model, Microfabrication, and Characterization.
    Liu J; Xia S; Peng C; Wu Z; Chu Z; Zhang Z; Lei H; Zheng F; Zhang W
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-density customizable microwave vacuum feedthrough for cryogenic applications.
    McCaughan AN; Gammell JI; Oh DM; Nam SW
    Rev Sci Instrum; 2020 Jan; 91(1):015114. PubMed ID: 32012540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully-Differential TPoS Resonators Based on Dual Interdigital Electrodes for Feedthrough Suppression.
    Zhang Y; Bao JF; Li XY; Zhou X; Wu ZH; Zhang XS
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact, compression-free, displaceable, and resealable vacuum feedthrough with built-in strain relief for sensitive components such as optical fibers.
    Buchholz B; Ebert V
    Rev Sci Instrum; 2014 May; 85(5):055109. PubMed ID: 24880417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanochannel system fabricated by MEMS microfabrication and atomic force microscopy.
    Wang Z; Wang D; Jiao N; Tung S; Dong Z
    IET Nanobiotechnol; 2011 Dec; 5(4):108-13. PubMed ID: 22149865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis.
    Ganesan K; Garrett DJ; Ahnood A; Shivdasani MN; Tong W; Turnley AM; Fox K; Meffin H; Prawer S
    Biomaterials; 2014 Jan; 35(3):908-15. PubMed ID: 24383127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on a 3D Encapsulation Technique for Capacitive MEMS Sensors Based on Through Silicon Via.
    Zhang M; Yang J; He Y; Yang F; Yang F; Han G; Si C; Ning J
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30597879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.
    Yamaner FY; Zhang X; Oralkan Ö
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):972-82. PubMed ID: 25965687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superstrong encapsulated monolayer graphene by the modified anodic bonding.
    Jung W; Yoon T; Choi J; Kim S; Kim YH; Kim TS; Han CS
    Nanoscale; 2014 Jan; 6(1):547-54. PubMed ID: 24241080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of non-magnetic multi-pin coaxial vacuum feedthrough system for cryogenic applications.
    Sikdar AK; Nandi J; Das P; Ray A
    Rev Sci Instrum; 2020 Jul; 91(7):074707. PubMed ID: 32752874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly precise and compact ultrahigh vacuum rotary feedthrough.
    Aiura Y; Kitano K
    Rev Sci Instrum; 2012 Mar; 83(3):035106. PubMed ID: 22462959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chip-scale hermetic feedthroughs for implantable bionics.
    Guenther T; Dodds CW; Lovell NH; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6717-20. PubMed ID: 22255880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Transition to Paschen's Law for Microscale Gas Breakdown at Subatmospheric Pressure.
    Loveless AM; Meng G; Ying Q; Wu F; Wang K; Cheng Y; Garner AL
    Sci Rep; 2019 Apr; 9(1):5669. PubMed ID: 30952912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Au Film Thickness and Surface Roughness on Room-Temperature Wafer Bonding and Wafer-Scale Vacuum Sealing by Au-Au Surface Activated Bonding.
    Yamamoto M; Matsumae T; Kurashima Y; Takagi H; Suga T; Takamatsu S; Itoh T; Higurashi E
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32349451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bonding-Based Wafer-Level Vacuum Packaging Using Atomic Hydrogen Pre-Treated Cu Bonding Frames.
    Tanaka K; Hirano H; Kumano M; Froemel J; Tanaka S
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-Based Nanoscale Vacuum Channel Transistor.
    Xu J; Gu Z; Yang W; Wang Q; Zhang X
    Nanoscale Res Lett; 2018 Oct; 13(1):311. PubMed ID: 30288627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale frictional behavior of graphene on SiO₂ and Ni(111) substrates.
    Paolicelli G; Tripathi M; Corradini V; Candini A; Valeri S
    Nanotechnology; 2015 Feb; 26(5):055703. PubMed ID: 25581391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.