These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36677205)

  • 1. Electrolysis of Bacteria Based on Microfluidic Technology.
    Zhao J; Li N; Zhou X; Yu Z; Lan M; Chen S; Miao J; Li Y; Li G; Yang F
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-voltage electrical cell lysis using a microfluidic device.
    Wei XY; Li JH; Wang L; Yang F
    Biomed Microdevices; 2019 Feb; 21(1):22. PubMed ID: 30790126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip.
    Shahini M; Yeow JT
    Nanotechnology; 2011 Aug; 22(32):325705. PubMed ID: 21775777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic platform for rapid screening of bacterial cell lysis.
    Fradique R; Azevedo AM; Chu V; Conde JP; Aires-Barros MR
    J Chromatogr A; 2020 Jan; 1610():460539. PubMed ID: 31543341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapidly prototyped multi-scale electrodes to minimize the voltage requirements for bacterial cell lysis.
    Gabardo CM; Kwong AM; Soleymani L
    Analyst; 2015 Mar; 140(5):1599-608. PubMed ID: 25597363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-voltage alternant direct current electroporation chip for ultrafast releasing the genome DNA of Helicobacter pylori bacterium.
    Pang X; Fu Q; Yang Y; Zhou C; Feng S; Gong K; Wang J; Zhou J
    Mikrochim Acta; 2024 Jan; 191(2):116. PubMed ID: 38291180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the Effect of Channel Structure and Flow Rate on On-Chip Bacterial Lysis.
    Dizaji AN; Ozturk Y; Ghorbanpoor H; Cetak A; Akcakoca I; Kocagoz T; Avci H; Corrigan D; Guzel FD
    IEEE Trans Nanobioscience; 2021 Jan; 20(1):86-91. PubMed ID: 33055026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lab-on-a-chip for preconcentration of bacteria and nucleic acid extraction.
    Hügle M; Dame G; Behrmann O; Rietzel R; Karthe D; Hufert FT; Urban GA
    RSC Adv; 2018 May; 8(36):20124-20130. PubMed ID: 35541671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless induction heating in a microfluidic device for cell lysis.
    Baek SK; Min J; Park JH
    Lab Chip; 2010 Apr; 10(7):909-17. PubMed ID: 20379569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic DNA extraction from cells by electroporation on an integrated microfluidic platform.
    Geng T; Bao N; Sriranganathanw N; Li L; Lu C
    Anal Chem; 2012 Nov; 84(21):9632-9. PubMed ID: 23061629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Continuous Flow-through Microfluidic Device for Electrical Lysis of Cells.
    Lo YJ; Lei U
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31013954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Evaluation of Fast Microfluidic Thermal Lysis of Bacteria for Diagnostic Sample Preparation.
    Packard MM; Wheeler EK; Alocilja EC; Shusteff M
    Diagnostics (Basel); 2013 Jan; 3(1):105-16. PubMed ID: 26835670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid electrical lysis of bacterial cells in a microfluidic device.
    Wang HY; Banada PP; Bhunia AK; Lu C
    Methods Mol Biol; 2007; 385():23-35. PubMed ID: 18365702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous electrical lysis of cancer cells in a microfluidic device with passivated interdigitated electrodes.
    Pandian K; Ajanth Praveen M; Hoque SZ; Sudeepthi A; Sen AK
    Biomicrofluidics; 2020 Nov; 14(6):064101. PubMed ID: 33163136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial inactivation via microfluidic electroporation device with insulating micropillars.
    Pudasaini S; Perera ATK; Ng SH; Yang C
    Electrophoresis; 2021 May; 42(9-10):1093-1101. PubMed ID: 33665842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-cost smartphone controlled portable system with accurately confined on-chip 3D electrodes for flow-through cell electroporation.
    Han C; He X; Wang J; Gao L; Yang G; Li D; Wang S; Chen X; Peng Z
    Bioelectrochemistry; 2020 Aug; 134():107486. PubMed ID: 32179452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line cell lysis and DNA extraction on a microfluidic biochip fabricated by microelectromechanical system technology.
    Chen X; Cui DF; Liu CC
    Electrophoresis; 2008 May; 29(9):1844-51. PubMed ID: 18393339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free microfluidic device reveals single cell phagocytic activity and screens plant medicine rapidly.
    Liu Y; Wang M; Liu R; Qiu F
    Lab Chip; 2023 Jan; 23(3):553-559. PubMed ID: 36688537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysis of gram-positive and gram-negative bacteria by antibacterial porous polymeric monolith formed in microfluidic biochips for sample preparation.
    Aly MA; Gauthier M; Yeow J
    Anal Bioanal Chem; 2014 Sep; 406(24):5977-87. PubMed ID: 25059724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.