These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36677217)

  • 1. Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels.
    Zhang J; Bai C; Wang Z; Liu X; Li X; Cui X
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Antifreezing Thermogalvanic Hydrogels for Human Heat Harvesting in Ultralow Temperature Environments.
    Zhang D; Zhou Y; Mao Y; Li Q; Liu L; Bai P; Ma R
    Nano Lett; 2023 Dec; 23(23):11272-11279. PubMed ID: 38038230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Powered Respiratory Monitoring Strategy Based on Adaptive Dual-Network Thermogalvanic Hydrogels.
    Li X; Li J; Wang T; Khan SA; Yuan Z; Yin Y; Zhang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48743-48751. PubMed ID: 36269324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Powered, Non-Toxic, Recyclable Thermogalvanic Hydrogel Sensor for Temperature Monitoring of Edibles.
    Yang K; Bai C; Liu B; Liu Z; Cui X
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable and Self-Powered Temperature-Pressure Dual Sensing Ionic Skins Based on Thermogalvanic Hydrogels.
    Fu X; Zhuang Z; Zhao Y; Liu B; Liao Y; Yu Z; Yang P; Liu K
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44792-44798. PubMed ID: 36153954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Electronics Based on the Gel Thermogalvanic Electrolyte for Self-Powered Human Health Monitoring.
    Bai C; Wang Z; Yang S; Cui X; Li X; Yin Y; Zhang M; Wang T; Sang S; Zhang W; Zhang H
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37316-37322. PubMed ID: 34328723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance.
    Liu L; Zhang D; Bai P; Mao Y; Li Q; Guo J; Fang Y; Ma R
    Adv Mater; 2023 Aug; 35(32):e2300696. PubMed ID: 37222174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells.
    Peng P; Zhou J; Liang L; Huang X; Lv H; Liu Z; Chen G
    Nanomicro Lett; 2022 Mar; 14(1):81. PubMed ID: 35333992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electrochemical system for efficiently harvesting low-grade heat energy.
    Lee SW; Yang Y; Lee HW; Ghasemi H; Kraemer D; Chen G; Cui Y
    Nat Commun; 2014 May; 5():3942. PubMed ID: 24845707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-stretching and high-performance ionic thermoelectric hydrogels based on carboxylated bacterial cellulose coordination for self-powered sensors.
    Chen L; Lou J; Rong X; Liu Z; Ding Q; Li X; Jiang Y; Ji X; Han W
    Carbohydr Polym; 2023 Dec; 321():121310. PubMed ID: 37739507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Day Thermogalvanic Cells for Environmental Thermal Energy Harvesting.
    Yu B; Duan J; Li J; Xie W; Jin H; Liu R; Wang H; Huang L; Hu B; Zhou J
    Research (Wash D C); 2019; 2019():2460953. PubMed ID: 31912029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest.
    Duan J; Feng G; Yu B; Li J; Chen M; Yang P; Feng J; Liu K; Zhou J
    Nat Commun; 2018 Dec; 9(1):5146. PubMed ID: 30514952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretchable and Durable Bacterial Cellulose-Based Thermocell with Improved Thermopower Density for Low-Grade Heat Harvesting.
    Wu Z; Wang B; Li J; Jia Y; Chen S; Wang H; Chen L; Shuai L
    Nano Lett; 2023 Nov; 23(22):10297-10304. PubMed ID: 37955657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat.
    Yang P; Liu K; Chen Q; Mo X; Zhou Y; Li S; Feng G; Zhou J
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):12050-3. PubMed ID: 27557890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaotropic Effect-Boosted Thermogalvanic Ionogel Thermocells for All-Weather Power Generation.
    Yang M; Hu Y; Wang X; Chen H; Yu J; Li W; Li R; Yan F
    Adv Mater; 2024 Apr; 36(16):e2312249. PubMed ID: 38193634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MXene and Carbon-Based Electrodes of Thermocells for Continuous Thermal Energy Harvest.
    Liu Z; Wei S; Hu Z; Zhu M; Chen G; Huang Y
    Small Methods; 2023 Aug; 7(8):e2300190. PubMed ID: 37096881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurement of the genuine efficiency of thermogalvanic heat-to-electricity conversion in thermocells.
    Trosheva MA; Buckingham MA; Aldous L
    Chem Sci; 2022 May; 13(17):4984-4998. PubMed ID: 35655863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress on Material Design and Device Fabrication via Coupling Photothermal Effect with Thermoelectric Effect.
    Liu S; Huo B; Guo CY
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seebeck, Peltier, and Soret effects: On different formalisms for transport equations in thermogalvanic cells.
    Kjelstrup S; Kristiansen KR; Gunnarshaug AF; Bedeaux D
    J Chem Phys; 2023 Jan; 158(2):020901. PubMed ID: 36641395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production.
    Wang Y; Zhang Y; Xin X; Yang J; Wang M; Wang R; Guo P; Huang W; Sobrido AJ; Wei B; Li X
    Science; 2023 Jul; 381(6655):291-296. PubMed ID: 37471552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.