These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 36677228)
1. Recent Progress on Hydrogel-Based Piezoelectric Devices for Biomedical Applications. Du Y; Du W; Lin D; Ai M; Li S; Zhang L Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677228 [TBL] [Abstract][Full Text] [Related]
2. Recent Progress in MXene Hydrogel for Wearable Electronics. Ren Y; He Q; Xu T; Zhang W; Peng Z; Meng B Biosensors (Basel); 2023 Apr; 13(5):. PubMed ID: 37232856 [TBL] [Abstract][Full Text] [Related]
3. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Rahmani P; Shojaei A Adv Colloid Interface Sci; 2021 Dec; 298():102553. PubMed ID: 34768136 [TBL] [Abstract][Full Text] [Related]
4. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
5. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. Cui C; Fu Q; Meng L; Hao S; Dai R; Yang J ACS Appl Bio Mater; 2021 Jan; 4(1):85-121. PubMed ID: 35014278 [TBL] [Abstract][Full Text] [Related]
6. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Vijayakanth T; Shankar S; Finkelstein-Zuta G; Rencus-Lazar S; Gilead S; Gazit E Chem Soc Rev; 2023 Aug; 52(17):6191-6220. PubMed ID: 37585216 [TBL] [Abstract][Full Text] [Related]
7. Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices. Das KK; Basu B; Maiti P; Dubey AK Acta Biomater; 2023 Nov; 171():85-113. PubMed ID: 37673230 [TBL] [Abstract][Full Text] [Related]
8. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Wang Z; Cong Y; Fu J J Mater Chem B; 2020 Apr; 8(16):3437-3459. PubMed ID: 32100788 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional conductive hydrogels and their applications as smart wearable devices. Chen Z; Chen Y; Hedenqvist MS; Chen C; Cai C; Li H; Liu H; Fu J J Mater Chem B; 2021 Mar; 9(11):2561-2583. PubMed ID: 33599653 [TBL] [Abstract][Full Text] [Related]
11. Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications. Chen Y; Zhang X; Lu C Chem Sci; 2024 Sep; 15(40):16436-66. PubMed ID: 39355228 [TBL] [Abstract][Full Text] [Related]
12. Tissue adhesive hydrogel bioelectronics. Li S; Cong Y; Fu J J Mater Chem B; 2021 Jun; 9(22):4423-4443. PubMed ID: 33908586 [TBL] [Abstract][Full Text] [Related]
13. Advances in the Preparation of Tough Conductive Hydrogels for Flexible Sensors. Ding H; Liu J; Shen X; Li H Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836050 [TBL] [Abstract][Full Text] [Related]
14. From emerging modalities to advanced applications of hydrogel piezoelectrics based on chitosan, gelatin and related biological macromolecules: A review. Fan P; Fan H; Wang S Int J Biol Macromol; 2024 Mar; 262(Pt 1):129691. PubMed ID: 38272406 [TBL] [Abstract][Full Text] [Related]
15. Recent advances of polymer-based piezoelectric composites for biomedical applications. Mokhtari F; Azimi B; Salehi M; Hashemikia S; Danti S J Mech Behav Biomed Mater; 2021 Oct; 122():104669. PubMed ID: 34280866 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Strain-Sensing Properties of the Conductive Hydrogel by Introducing PVDF-TrFE. Hu Z; Li J; Wei X; Wang C; Cao Y; Gao Z; Han J; Li Y ACS Appl Mater Interfaces; 2022 Oct; 14(40):45853-45868. PubMed ID: 36170495 [TBL] [Abstract][Full Text] [Related]
17. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors. Liu H; Li M; Ouyang C; Lu TJ; Li F; Xu F Small; 2018 Sep; 14(36):e1801711. PubMed ID: 30062710 [TBL] [Abstract][Full Text] [Related]