These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36677238)

  • 1. Magnetic Energy Losses and Temperature Control System for Giant Magnetostrictive Transducer.
    Li Y; Dong X; Yu X
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Evaluation and Experimental Test on a New Giant Magnetostrictive Transducer with Low Heat Loss Design.
    Bai Z; Zhang Z; Wang J; Sun X; Hu W
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on equivalent thermal network modeling for rare-earth giant magnetostrictive transducer.
    Zhang Z; Yang X; Chen Y
    Sci Rep; 2022 Oct; 12(1):18088. PubMed ID: 36302882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations on a mathematical model for optimum impedance compensation of a giant magnetostrictive ultrasonic transducer and its resonance characteristics.
    Zhou H; Zhang J; Feng P; Yu D; Wu Z
    Ultrasonics; 2021 Feb; 110():106286. PubMed ID: 33242698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Magnetic-machine Coupling Characteristics of Giant Magnetostrictive Actuator Based on the Free Energy Hysteresis Characteristics.
    Yu Z; Wang T; Zhou M
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of High-Power Tonpilz Terfenol-D Transducer Using Complex Material Parameters.
    Wei Y; Yang X; Chen Y; Zhang Z; Zheng H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Design of Rare-Earth Giant Magnetostrictive Ultrasonic Transducer and Experimental Study on Its Application of Ultrasonic Surface Strengthening.
    Fang S; Zhang Q; Zhao H; Yu J; Chu Y
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An amplitude prediction model for a giant magnetostrictive ultrasonic transducer.
    Zhou H; Zhang J; Feng P; Yu D; Wu Z
    Ultrasonics; 2020 Dec; 108():106017. PubMed ID: 32690341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure Design and Working Characteristics Analysis of Direct-Drive Giant Magnetostrictive Injector.
    Zhou Z; He Z; Xue G; Zhou J; Rong C; Liu G
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature compensation design and experiment for a giant magnetostrictive actuator.
    Zhao Z; Sui X
    Sci Rep; 2021 Jan; 11(1):251. PubMed ID: 33420274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone-conducted auditory brainstem-evoked responses and skull vibratory velocity measurement in rats at frequencies of 0.5-30 kHz with a new giant magnetostrictive bone conduction transducer.
    Sakai Y; Karino S; Kaga K
    Acta Otolaryngol; 2006 Sep; 126(9):926-33. PubMed ID: 16864489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equivalent magnetic circuit method of estimating iron losses in induction motor spindles.
    Lü L; Xiong W; Hu C
    Sci Rep; 2022 Jun; 12(1):9509. PubMed ID: 35681068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite Element Solutions for Magnetic Field Problems in Terfenol-D Transducers.
    Teng D; Li Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Complex Behaviour of High-Frequency Currents in Simple Circuits.
    Bauwens P
    Proc R Soc Med; 1947 Oct; 40(12):741-8. PubMed ID: 19993665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed giant magnetostrictive actuator using laminated silicon steel core.
    Liu P; Kong M; Diao W; Feng Z
    Rev Sci Instrum; 2021 May; 92(5):055004. PubMed ID: 34243262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An acoustic/thermal model for self-heating in PMN sonar projectors.
    Shankar N; Hom CL
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2151-8. PubMed ID: 11108353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPICE Modeling of a High-Power Terfenol-D Transducer Considering Losses and Magnetic Flux Leakage.
    Yang M; Yang X; Wei Y; Zhang Z; Chen Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):812-822. PubMed ID: 34882552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on heat pipe heat dissipation of high-power ultrasonic transducer.
    Yao Y; Pan Y; Liu S
    Ultrasonics; 2022 Mar; 120():106654. PubMed ID: 34915247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Optimization of High-Power and Low-Frequency Broadband Transducer with Giant Magnetostrictive Material.
    Yang L; Wang W; Zhao X; Li H; Xiang Y
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for characterizing convective cryoprobe heat transfer in ultrasound gel phantoms.
    Etheridge ML; Choi J; Ramadhyani S; Bischof JC
    J Biomech Eng; 2013 Feb; 135(2):021002. PubMed ID: 23445047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.