BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36677326)

  • 1. The Essential Role of OmpR in
    Chen L; Liu X; Gao C; Guan Y; Lin J; Liu X; Pang X
    Microorganisms; 2022 Dec; 11(1):. PubMed ID: 36677326
    [No Abstract]   [Full Text] [Related]  

  • 2. The Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in
    Wang ZB; Li YQ; Lin JQ; Pang X; Liu XM; Liu BQ; Wang R; Zhang CJ; Wu Y; Lin JQ; Chen LX
    Front Microbiol; 2016; 7():1755. PubMed ID: 27857710
    [No Abstract]   [Full Text] [Related]  

  • 3. Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus.
    Wu W; Pang X; Lin J; Liu X; Wang R; Lin J; Chen L
    PLoS One; 2017; 12(9):e0183668. PubMed ID: 28873420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of a novel Acidithiobacillus caldus gene cluster involved in metabolism of reduced inorganic sulfur compounds.
    Rzhepishevska OI; Valdés J; Marcinkeviciene L; Gallardo CA; Meskys R; Bonnefoy V; Holmes DS; Dopson M
    Appl Environ Microbiol; 2007 Nov; 73(22):7367-72. PubMed ID: 17873067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur Oxidation in the Acidophilic Autotrophic
    Wang R; Lin JQ; Liu XM; Pang X; Zhang CJ; Yang CL; Gao XY; Lin CM; Li YQ; Li Y; Lin JQ; Chen LX
    Front Microbiol; 2018; 9():3290. PubMed ID: 30687275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus.
    Feng S; Hou S; Cui Y; Tong Y; Yang H
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):21-33. PubMed ID: 31758413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.
    Chen L; Ren Y; Lin J; Liu X; Pang X; Lin J
    PLoS One; 2012; 7(9):e39470. PubMed ID: 22984393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.
    Castro M; Deane SM; Ruiz L; Rawlings DE; Guiliani N
    PLoS One; 2015; 10(2):e0116399. PubMed ID: 25689133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The σ
    Li LF; Fu LJ; Lin JQ; Pang X; Liu XM; Wang R; Wang ZB; Lin JQ; Chen LX
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2079-2092. PubMed ID: 27966049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of arsB and tetH mutants of the sulfur-oxidizing bacterium Acidithiobacillus caldus by marker exchange.
    van Zyl LJ; van Munster JM; Rawlings DE
    Appl Environ Microbiol; 2008 Sep; 74(18):5686-94. PubMed ID: 18658286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential Role of σ Factor RpoF in Flagellar Biosynthesis and Flagella-Mediated Motility of
    Yang CL; Chen XK; Wang R; Lin JQ; Liu XM; Pang X; Zhang CJ; Lin JQ; Chen LX
    Front Microbiol; 2019; 10():1130. PubMed ID: 31178842
    [No Abstract]   [Full Text] [Related]  

  • 12. Sulfur metabolism in the extreme acidophile acidithiobacillus caldus.
    Mangold S; Valdés J; Holmes DS; Dopson M
    Front Microbiol; 2011; 2():17. PubMed ID: 21687411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of tetrathionate hydrolase from the marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.
    Kanao T; Onishi M; Kajitani Y; Hashimoto Y; Toge T; Kikukawa H; Kamimura K
    Biosci Biotechnol Biochem; 2018 Jan; 82(1):152-160. PubMed ID: 29303046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization, purification and properties of a tetrathionate hydrolase from Acidithiobacillus caldus.
    Bugaytsova Z; Lindström EB
    Eur J Biochem; 2004 Jan; 271(2):272-80. PubMed ID: 14717695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adaptation mechanisms of Acidithiobacillus caldus CCTCC M 2018054 to extreme acid stress: Bioleaching performance, physiology, and transcriptomics.
    Feng S; Qiu Y; Huang Z; Yin Y; Zhang H; Zhu D; Tong Y; Yang H
    Environ Res; 2021 Aug; 199():111341. PubMed ID: 34015291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional assessment of EnvZ/OmpR two-component system in Shewanella oneidensis.
    Yuan J; Wei B; Shi M; Gao H
    PLoS One; 2011; 6(8):e23701. PubMed ID: 21886811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric Uptake Regulator Provides a New Strategy for Acidophile Adaptation to Acidic Ecosystems.
    Chen XK; Li XY; Ha YF; Lin JQ; Liu XM; Pang X; Lin JQ; Chen LX
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32245756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Firefly Luciferase (Luc) as a Reporter Gene for the Chemoautotrophic and Acidophilic Acidithiobacillus spp.
    Chen X; Liu X; Gao Y; Lin J; Liu X; Pang X; Lin J; Chen L
    Curr Microbiol; 2020 Nov; 77(11):3724-3730. PubMed ID: 32945904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Insights into a Novel Cu(I)-Sensitive ArsR/SmtB Family Repressor in Extremophile Acidithiobacillus caldus.
    Qiu Y; Tong Y; Yang H; Feng S
    Appl Environ Microbiol; 2023 Jan; 89(1):e0126622. PubMed ID: 36602357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans.
    Liljeqvist M; Rzhepishevska OI; Dopson M
    Appl Environ Microbiol; 2013 Feb; 79(3):951-7. PubMed ID: 23183980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.